

2020 Conference on Neural Information Processing Systems, Vancouver, Canada

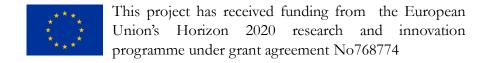
NeurIPS 2020 Workshop: Tackling Climate Change with Machine Learning

A Generative Adversarial Gated Recurrent Network

for Power Disaggregation

& Consumption Awareness

Kaselimi, M., Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.

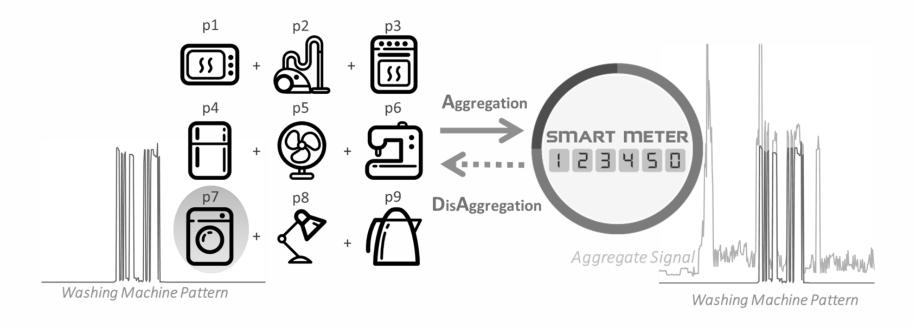


OUTLINE

- ✓ Motivation and relation to climate change
- ✓ Non-intrusive load modeling (NILM) fundamentals
- ✓ Limitations of the existing NILM methods
- ✓The proposed EnerGAN++ model
- ✓ Results

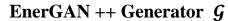
THE PROBLEM OF ENERGY CONSUMPTION AWARENESS

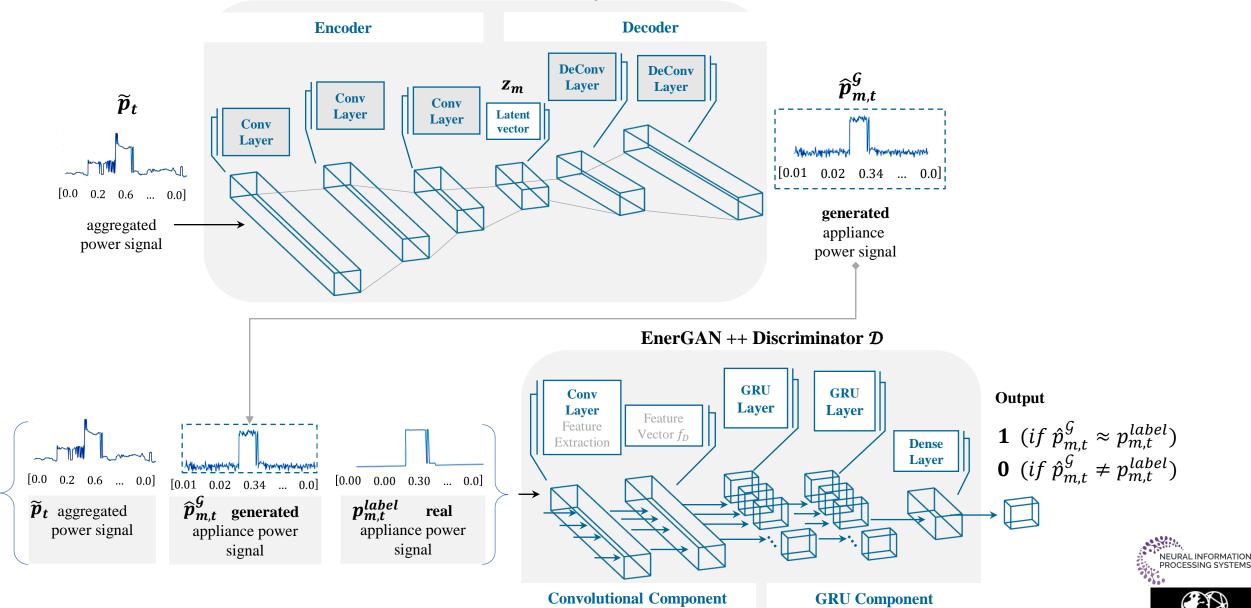
THE SOLUTION: NILM



Non-Intrusive Load Monitoring (NILM), or Energy Disaggregation (Hart, 1992) is known as the determination of appliance-specific load consumption, using the aggregate power signal of a household as input.

OUR SOLUTION: EnerGAN++ MODEL

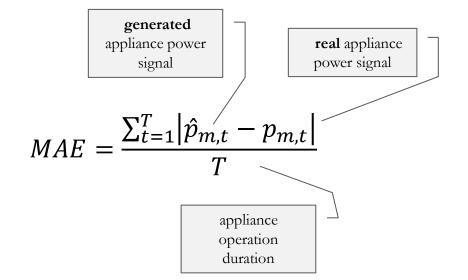




Climate Change Al

PERFORMANCE EVALUATION AND COMPARISONS

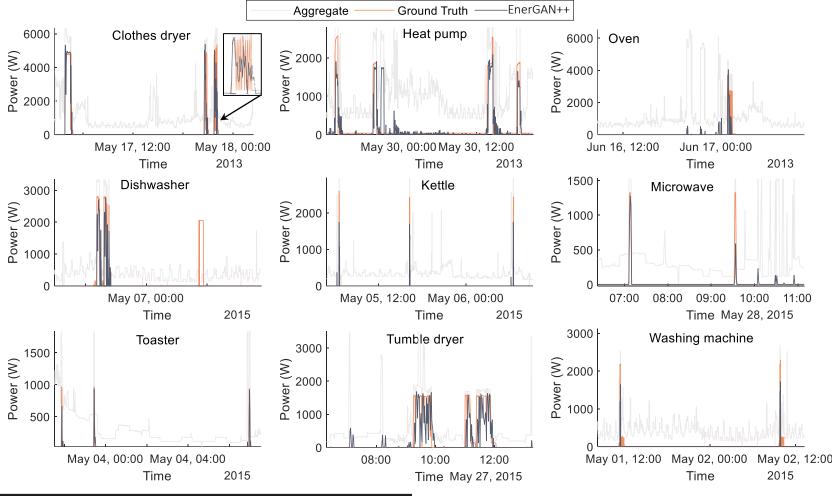
- Datasets: AMPds and REFIT
- Metrics:



• Comparisons:

- (i) Long Short-Term Memory method (Kaselimi, 2019b, 2020),
- (ii) Denoising Autoencoders (DAE) (Kelly, 2015),
- (iii) seq2seq CNN (Chen, 2018),
- (iv) Combinatorial Optimization (CO) (Batra, 2014) and
- (v) Factorial Hidden Markov Model (FHMM) (Batra, 2014).

RESULTS



									
	Wash. Dr.	H. Pump	Oven	Dish	Kettle	Micro	Toast	Tum. Dr.	Wash
Proposed	17.7	80.1	8.1	20.3	7.8	8.3	2.2	16.9	7.3
BabiLSTM	10.0	88.2	17.6	29.2	41.2	15.2	12.8	48.7	17.6
DAE	37.3	55.6	19.2	25.4	9.1	12.2	8.3	32.9	13.4
seq2seq CNN	15.4	107.1	67.5	34.9	19.8	14.8	15.0	42.5	27.0
LSTM	90.2	154.9	57.6	102.1	41.1	15.9	26.7	87.8	31.8
FHMM	129.5	121.6	49.3	147.7	40.8	77.3	32.4	91.5	177.0
CO	120.1	249.3	267.1	138.8	40.6	51.8	35.6	91.9	210.9

REFERENCES

- G. W. Hart, "Nonintrusive appliance load monitoring," Proceedings of the IEEE, vol. 80, no. 12, pp.1870–1891, 1992
- M. Kaselimi, N. Doulamis, A. Doulamis, A. Voulodimos, and E. Protopapadakis, "Bayesian-optimized bidirectional lstm regression model for non-intrusive load monitoring," in ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2747–2751.
- M. Kaselimi, N. Doulamis, A. Voulodimos, E. Protopapadakis, and A. Doulamis, "Context aware energy disaggregation using adaptive bidirectional lstm models," IEEE Transactions on Smart Grid, vol. 11, no. 4,pp. 3054–3067, 2020.
- J. Kelly and W. Knottenbelt, "Neural nilm: Deep neural networks applied to energy disaggregation," in Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, 2015, pp. 55–64
- K. Chen, Q. Wang, Z. He, K. Chen, J. Hu, and J. He, "Convolutional sequence to sequence non-intrusive load monitoring," The Journal of Engineering, vol. 2018, no. 17, pp. 1860–1864, 2018.
- N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and M. Srivastava, "Nilmtk: an open source toolkit for non-intrusive load monitoring," in Proceedings of the 5th international conference on Future energy systems, 2014, pp. 265–276

Thank you!

