Towards Data-Driven Physics-Informed Global Precipitation Forecasting from Satellite Imagery

Valentina Zantedeschi – Daniele De Martini – Catherine Tong Christian Schroeder de Witt – Freddie Kalaitzis – Piotr Biliński Matthew Chantry – Duncan Watson-Parris

Data-driven Precipitation Forecasting

w.r.t. numerical models:

reduced data and compute requirements and inference time lag

We propose to forecast precipitation

- globally: to push the time horizon to 3+ days
- with a **probabilistic model**: to account for the stochasticity of the system
- with implicit **physics** knowledge: to improve performance 3.
- from **Earth observations**: satellite imagery, ground measurements

Data from RainBench [1]

SimSat

ERA5

IMERG

- bands measuring global cloud cover and moisture features
- retrieved at resolution 5.625°, 3 hour frequency
- 2016 present
- estimated physical and atmospheric variables at different heights (e.g. humidity, temperature)
- retrieved at resolutions 5.625° and 0.25°, 3 hour frequency
- 1979 present
- estimated precipitation intensity
- retrieved at resolution 0.25°, 3 hour frequency
- 2000 present

[1] Schroeder de Witt, Tong, et al. "RainBench: Enabling Data-Driven Precipitation Forecasting on a Global Scale." 2020

Three-Steps physics-informed and probabilistic approach

Present State Estimation

Model: Convolutional LSTM [1]

Input: stream of Earth Observations

Output: Atmospheric State (17 ERA5 variables)

Earth Observations up to t = 0h:

- SimSat
- Surface pressure
- Temperature 2m

Past State up to t = -24h:

ERA5 variables

[1] Shi, Xingjian, et al. "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." NeurIPS 2015

Future State Forecasting

Model: Stochastic Video Generation with Learned Prior [2] with Variational AutoEncoder and VGG Discriminator

<u>Input-Output</u>: Atmospheric State (17 ERA5 variables)

- [2] Denton, Emily, and Rob Fergus. "Stochastic video generation with a learned prior." JMLR 2018
- [3] Rasp, Stephan, et al. "WeatherBench: A benchmark dataset for data-driven weather forecasting." 2020.

Precipitation Estimation

Model: Gridcell-wise Fully Connected Network

<u>Input</u>: Atmospheric State (17 ERA5 variables)

Output: Precipitation Class

Segmentation Task:

(mm over 3 hours)

No precip: < 1 **Drizzle**: [1, 7.5]

Light: [7.5, 22.8]

Heavy: > 22.8

Future work

- End-to-end model
- Calibrate model confidence
- Regress precipitation intensity
- Increase resolution

Thank you for your attention!

