Loosely Conditioned Emulation of Global Climate Models With Generative Adversarial Networks

Alex Ayala, Chris Drazic, Brian Hutchinson, Ben Kravitz, Claudia Tebaldi

Introduction

- Climate models encapsulate our understanding of the Earth system
 - Allows research on future realizations of Earth
 - Estimating risks of extreme weather events requires numerous realizations
- Current climate models are computationally expensive (days to months)
- Deep learning can provide a solution:
 - Train a Generative Adversarial Network (GAN) to emulate Earth System Models (ESMs)
 - Generate realizations rapidly («1s)

Data

- Daily global precipitation output from the MIROC5 ESM
 - o 725, 45, and 45 years of ESM data for train, validation, and test
 - Model 32-day sequences ("months")
 - Two models, loosely conditioned by training on disjoint boreal "seasons"
 - Fall-Winter
 - Spring-Summer

Problem Formulation

Real data: $x \in \mathbb{R}^{32 imes 64 imes 128} \sim P$

Train a GAN to induce a distribution G that approximates P

Performance metrics:

- Compare mean number of dry days in samples from G vs P
- KL-divergence-based scores between G and P

Model Architecture

Progressive Growing

Samples

Mean Number of Dry Days

- Averaged per-sample across
 ~8000 months
- Performs well globally
- Slightly wider dry tongue near equator

KL Divergence

- X-axis: KL-Div against Fall-Winter Test Set
- **Y-axis:** KL-Div against Spring-Summer Test Set
- Degrade validation sets by applying zero-centered noise
 - Serves as our upper bound
- Generated data differs by a variance of 0.024 mm/Day (less than 1% off)

$$egin{aligned} ext{Val}\left(ext{D}
ight) &= ext{Val} + \epsilon \ \epsilon &\sim N(0, 0.024) \end{aligned}$$

Conclusion

- Take-away:
 - o GANs can generate realistic spatio-temporal precipitation
- Future work:
 - Joint generation of precipitation and temperature
 - Conditioning on low temporal resolution climate averages