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Climate models help predict future changes

• Numerically solves fluid mechanics 
equations

• A longer weather simulation (w/ 
coupling to ocean/ice)

• Many parametrizations

• Discretized:

• Large grid size (50 – 100 km)

Image from NOAA



Climate models find local precipitation trends harder to 
predict than temperature 

WA/OR/ID average



VCM pioneers novel software to improve weather and climate models

VCM = Vulcan Climate Modeling, a philanthropic, open-source project of Vulcan Inc. in Seattle (Paul Allen)

https://www.vulcan.com/Our-Work/Climate/Advancing-Climate-Science.aspx

Two interlocking groups, partnering with NOAA’s Geophysical Fluid Dynamics Lab, using next-gen 
version of US global weather forecast model

• “Faster” (led by Oli Fuhrer): Use a domain-specific language (DSL) to rewrite the model to run faster on modern 
supercomputers (CPU or GPU), enabling multiyear climate simulations with 1-3 km grids

• “Better” (led by Chris Bretherton): Train machine learning (ML) on these simulations to increase accuracy of rainfall 
predictions by an affordable 25 km-grid GCM

These projects are mutually beneficial: 

• “Faster” gives training data for “Better”: We need fast high-resolution models to provide ML training data

• “Better” gives code that runs on the GPU “Faster”: ML runs on GPUs very efficiently

We are 1 year into a 2-year pilot phase, focused on the atmospheric model component, FV3GFS

https://www.vulcan.com/Our-Work/Climate/Advancing-Climate-Science.aspx


Parameterizations as a machine learning problem

• Inputs

• Weather variables: Humidity, 
temperature, sunlight, elevation

• Outputs:

• Heating and moistening rates due to 
unresolved storms

Single Atmospheric Column

Image courtesy of the U.S. Department of Energy 
Atmospheric Radiation Measurement (ARM) user facility.



Literature overview
Authors Training Data Evaluation Technique ML Model

Krasnopalsky, et. al. (2010, 2013) Local Cloud Resolving Model Offline NN

Brenowitz and Bretherton 2018, 
2019

Global Cloud Resolving Model 
(GCRM), Aquaplanet

offline (2018), single column 
model (2018), online (2019)

NN

Pritchard, Rasp, Gentine, and 
others

Super-parameterized (SP) aqua-
planet

Offline (2018)  and online (2019) NN

Yuval and O’Gorman GCRM, aqua-planet Offline (2019) and online (2020) RF(2019), NN(2020)

Han, et. al. (2020) SP, realistic topography Offline, single column model NN

Mooers, et. al. (2020) SP, realistic topography Offline NN

Brenowitz, et. al (2020) GCRM, realistic topography Offline, online NN and RF

This 
presentation



Training Data

• NOAA’s fine-resolution GSRM:  
FV3GFS/X-SHiELD

• C3072 Horizontal resolution 
(approximately 3 km)
• Resolves large thunderstorms

• Nudged towards observations

• Initialized at midnight (UTC) on 
August 1, 2016

• 40 days, saved at C384 
resolution (25 km) every 15 
minutes

SHiELD 40-day DYAMOND run,  S.-J. Lin and Xi Chen, GFDL



ML parameterizations via coarse graining

Fine-resolution 
Reference model

Coarsened 
Reference Model

Baseline 
Parameterization

≈?

Precipitation



ML Models

• Random Forest

• Max depth: 13

• Ensemble size: 13

• Neural Network

• Multilayer perceptron

• 2 layers, 128 nodes per layer

• ReLU activation



Evaluation: Online ≠ Offline

Offline Skill = “Traditional ML” Online = Coupled to Fluid Dynamics

ML

Fluid 
Dynamics

ML

Prediction

Input Data

Many iterations



Offline Skill

Stable Simulations

Accurate weather
forecasts

Low
Climate Bias

Online
Skill

ML Parameterization “Hierarchy of Needs” for Climate 
Modeling



RF and NN make similar predictions “offline”

Random Forest Neural Network

Net “drying” = - precipitation



Forecast Skill (online)

• Weather simulations initialized on 
Aug. 8, 2016 at 0 UTC

• Root-mean squared error of 
• Moisture (PW)
• PWSE

• Random forest outperforms 
baseline

• Neural network is unstable and 
crashes
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Climate drifts in RF and NN

• Global average precipitable 
water (PW) decreases in RF
• Too much rain!

• Global average 500 mb height 
decreases in RF
• Changes in circulation

• NN is more sensitive to drifts 
and crashes
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Thanks!

https://arxiv.org/abs/2011.03081

https://arxiv.org/abs/2011.03081

