EarthNet2021

Climate Simulation

High Resolution Context

Artificial

Future Earth Intelligence Surface Spectral

A novel large-scale dataset and challenge for forecasting localized climate impacts

Christian Requena-Mesa, Vitus Benson, Jakob Runge, Joachim Denzler, Markus Reichstein

Max Planck Institute for Biogeochemistry. In Cooperation with the Computer Vision Group, FSU Jena and the German Aerospace Center (DLR).

12/11/2020 Tackling Climate Change with Machine Learning @NeurlPS2020

Climate change increases frequency of extreme events.

©Nature 10.1038/d41586-018-05849-9

Seasonal weather prediction

January 2021

Maps processed by EFFIS System based on ECMWF Seasonal Forecast

Localized climate impact forecasting

Impacts materialize at a very local scale

Spring

Summer

2019

2018

2018 summer heat wave

High-res imagery embeds the local impacts

2018 British Isles heat wave

A challenge to **predict future land surface**, as seen from space, given coarse weather projections.

EarthNet2021 Dataset

Visualization single sample of the EarthNet2021 dataset

Machine learning setting

Challenge tracks

Main track
IID test

Robustness 00D test

Evaluation metric: EarthNetScore

EarthNetScore is a composed metric that evaluates 4 subtasks:

Component	Metric
Overall accuracy	Median Absolute Deviation
temporal trend of vegetation state	Ordinary Least Squares
Temporal distribution of vegetation state	Earth Mover Distance
Spatial perceptual similarity	Structural Similarity Index

Quick-Start Guide Leaderboard Rules Download Blog

Land surface forecasting

Using Machine Learning to forecast the dynamics of Earth's surface, we can predict crop yield, forest health, the effects of a drought and more.

Deep learning templates

Any method is welcome in the challenge. Our toolkit provides functional templates for Pytorch and Tensorflow developers.

Open source

The EarthNet toolkit and dataset are free to access, modify and distribute.

Learn more at <u>earthnet.tech</u>

Thank you

See you on the leaderboard!

{crequ, vbenson}@bgc-jena.mpg.de

Sample visualization

