An Enriched Automated PV Registry: Combining Image Recognition and 3D Building Data

Benjamin Rausch*, Kevin Mayer*, Marie-Louise Arlt, Gunther Gust, Philipp Staudt, Christof Weinhardt, Dirk Neumann, Ram Rajagopal

> A project in close cooperation between Stanford University, Karlsruhe Institute of Technology, and University of Freiburg

Motivation & Contributions

- Accurate and up-to-date databases of decentralized generation units are indispensable for optimized systems operations
- Previously, CNNs have been used to automatically classify solar panels from aerial imagery and to create databases on a country scale, e.g. *DeepSolar* by Yu et al., 2018¹
- Yet, previous studies do not account for the tilt and orientation angle of detected systems

In this work, we:

- Combine aerial imagery with 3D building data to enrich detected PV systems
- ➤ Show that our approach enables improved PV generation capacity estimates
- ➤ Compare our automated PV registry with Germany's official registry

Data Sources

Image Data²

GSD: 0.1 m/pixel

3D Building Data²

Provides a rooftop's **tilt** and **orientation**

PV registry^{2,3}

Provides info on PV systems > **30kW**

Combine publicly available datasets to obtain new insights

Methodology

Notes:

- a. Only aerial images classified as depicting PV systems are propagated for segmentation
- b. PV systems depicted as real-world coordinate polygons are intersected with rooftop polygons
- c. Detected PV systems and their respective capacity estimates are aggregated per address

Creating an enriched automated PV registry is a sequential process

Results: Classification and Segmentation

Classification:

Precision: 87.3%

Recall: 87.5%

Segmentation:

Paper	MAPE [%]	mIoU [%]	GSD [cm]
Camilo et al.4	-	60	30
DeepSolar ¹	24.6	-	5
SolarNet ⁵	-	90.9	5
This work	18.5	74.1	10

Classification and segmentation on par with recent studies

**Win Hou, Blao Wang, Wanqi Hu, Lei Yin, Anbu Huang, and Haishan Wu. SolarNet: A Deep Learning Framework to Map Solar PowerPlants In China From Satellite Imagery. 2020. URL https://arxiv.org/pdf/1912.03685_pdf.

Stanford University

⁴ Joseph Camilo, Rui Wang, Leslie M Collins, Kyle Bradbury, and Jordan M Malof. Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery. arXiv preprint arXiv:1801.04018, 2018.

Results: PV Capacity Estimation with Tilt Angles

Incorporate rooftop tilt to correct PV area estimated from a bird's eye view

Approach	MedAPE ⁶ [%]	
This work (no tilt)	25.9	
This work (including tilt)	16.1	

Rooftop tilt significantly improves PV capacity estimates

⁶Denotes the Median Absolute Percentage Error

Results: Comparison with *MaStR*⁷ in Bottrop

- Duplicated entries
 - ➤ Approx. 3.2% of *MaStR*'s entries are duplicates
- Erroneous capacities
 - ➤ *MaStR* contains substantially inflated entries
- Multiple entries per address in MaStR
 - Impractical for registry-based analyses
- False addresses
 - ➤ *MaStR* lists 24 out of 160 entries with a false address
- Missing entries
 - ➤ We identify 21 PV systems not listed in *MaStR*

For Bottrop, MaStR lists 29,758 kWp, while our automated registry arrives at 32,286 kWp

Discussion and Outlook

- State-of-the-art results in classification and segmentation
- Incorporating a rooftop's tilt enables accurate PV capacity estimation
- Approach to automatically construct, update, and enhance PV registries
- Future research:
 - ➤ Improve PV supply forecasting and nowcasting
 - ➤ Enhance integration of EV charging, PV systems, and grid reinforcement