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. 1/3" of all crop yield variability in the world
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Data construction and design:

SDA

County-level data from Minnesota and lllinois in 2012:

Features: daily minimum temperature, daily maximum
temperature, daily precipitation, geo-location information

NOAA, US
Physics Department Target: end-of-year crop yield
Sciences of Agriculture
Laboratory l Train / test split: 70 : 30
Total number of counties: 189
l Crop Yield Total number of samples: 189
Weather data data Total number of features: 1100
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Modeling Results

Models MSE R~
MN 1L Overall

Gaussian Processes 0.2693 | 0.2215 | 0.2432 | 0.9706
Deterministic DNN 0.2341 | 0.2942 | 0.2669 | 0.9678
Ensemble 1 (equal weights) 0.2333 | 0.2392 | 0.2365 | 0.9714
Ensemble 2 (computed weights) | 0.2423 | 0.2296 | 0.2353 | 0.9716
GP to NN pipeline 0.4826 | 0.9336 | 0.729 0.912
Bayesian NN 1.8978 | 0.6833 | 1.2387 | 0.8505

Table 1: Baseline Model Comparison



Modeling Results - Predictions
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Modeling Results - Uncertainty Estimates

Predicted Yield predicted yield
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Changepoint Detection

Changepoint Segments

M Segment 1, Max Temperature below 35.16 degC
B Segment 2, Max Temperature between 35.16 and 39.02 degC
B Segment 3, Mex Temperature above 39.02 degC
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Changepoint analysis can help with crop production planning.
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Changepoint Detection

ChangePoint Segments
M Segment 1, Max Temperature below 39.96 degC
" = Segment 2, Max Temperature between 39.96 and 40.9 degC
- = M Segment 3, Mex Temperature above 40.9 degC
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M Changepoint analysis can help with crop production planning. 12



Thank you. Any Questions?



