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1. 1/3rd of all crop yield variability in the world

can be explained by climate variability. [1]

2. Up to 75% of corn & soybean yield variation 

in Midwest USA can be explained by weather 

variations. [1]

[1] Deepak K Ray, James S Gerber, Graham K MacDonald, and Paul C West. Climate variation 266 explains a third of global

crop yield variability. Nature communications, 6(1):1–9, 2015.
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Climate 
variability leads 

to crop yield 
variability

Understand the 
effect of 
extreme 

weather on 
crop yield

Identify 
weather 

thresholds 
under which 

yield changes

1. 1/3rd of all crop yield variability in the world

can be explained by climate variability. [1]

2. Up to 75% of corn & soybean yield variation 

in Midwest USA can be explained by weather 

variations. [1]

[1] Deepak K Ray, James S Gerber, Graham K MacDonald, and Paul C West. Climate variation 266 explains a third of global

crop yield variability. Nature communications, 6(1):1–9, 2015.
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Process Based Biophysical Models

Conventional Statistical Models

Machine Learning
Neural Networks,

Gaussian Processes,

Bayesian Neural Networks
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Data construction and design:

County-level data from Minnesota and Illinois in 2012:

Features: daily minimum temperature, daily maximum 

temperature, daily precipitation, geo-location information

Target: end-of-year crop yield 

Train / test split: 70 : 30

Total number of counties: 189

Total number of samples: 189

Total number of features: 1100
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Modeling Results - Predictions
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Modeling Results - Uncertainty Estimates
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Changepoint Detection
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Thank you. Any Questions?
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