Climate Change Driven Crop Yield Failure

Somya Sharma School of Statistics University of Minnesota Deepak Ray
Institute of Environment
University of Minnesota

Snigdhansu Chatterjee
School of Statistics
University of Minnesota

Partially supported by US National Science Foundation under grants # DMS-1622483, # DMS-1737918, # OAC-1939916 and #DMR-1939956

Tackling Climate Change with Machine Learning workshop at NeurlPS 2020

Motivation

Motivation

- 1. 1/3rd of all crop yield variability in the **world** can be explained by climate variability. [1]
- 2. Up to 75% of corn & soybean yield variation in **Midwest** USA can be explained by weather variations. [1]

Motivation

- 1. 1/3rd of all crop yield variability in the **world** can be explained by climate variability. [1]
- Up to 75% of corn & soybean yield variation in Midwest USA can be explained by weather variations. [1]

Identify
weather
thresholds
under which
yield changes

Literature Background

Process Based Biophysical Models

Conventional Statistical Models

Machine Learning

Neural Networks, Gaussian Processes, Bayesian Neural Networks

Dataset

Dataset

NOAA,
Physics
Sciences
Laboratory

Weather data

US
Department
of Agriculture

Crop Yield
data

Data construction and design:

County-level data from Minnesota and Illinois in 2012:

Features: daily minimum temperature, daily maximum temperature, daily precipitation, geo-location information

Target: end-of-year crop yield

Train / test split: 70:30

Total number of counties: 189
Total number of samples: 189
Total number of features: 1100

Modeling Results

Models	MSE			\mathbb{R}^2
	MN	IL	Overall	
Gaussian Processes	0.2693	0.2215	0.2432	0.9706
Deterministic DNN	0.2341	0.2942	0.2669	0.9678
Ensemble 1 (equal weights)	0.2333	0.2392	0.2365	0.9714
Ensemble 2 (computed weights)	0.2423	0.2296	0.2353	0.9716
GP to NN pipeline	0.4826	0.9336	0.729	0.912
Bayesian NN	1.8978	0.6833	1.2387	0.8505

Table 1: Baseline Model Comparison

Modeling Results - Predictions

Modeling Results - Uncertainty Estimates

Changepoint Detection

Changepoint Detection

Thank you. Any Questions?

