Accurate river level predictions using a Wavenet-like model

Shannon Doyle and Anastasia Borovykh

Relevance

River Level forecasts are important for:

- Flood management
- Inland Shipping
- City planning
- Infrastructure planning
- Water management
- Environmental planning

Data and Study Area - River Trent

Daily Average values of:

River Levels UK:

River Stage 2012-2020

NRFA:

Rainfall and river flow

1982-2018

Station Location

1: Darlaston

2: Kings Bromley

3: Colwick

4: North Muskham

5: Gainsbury 6: Keadby

W: Shrewsbury

w. Sillewsbury

River Level Formation

Short-term dependencies with hydrological variables

Seasonality

Yearly trends and climate change

River levels display non-linearity and noise

River Level forecasting

Physically-based hydrodynamic models

Autoregressive models, FFC neural networks

(Inflow) Tuhe 820 860 900 940 980 1020 1060

| Shiduo | Cross section | Coutflow | Coutf

Elevation (m)

New gold standard: LSTM

WaveNet model

CNN adapted to temporal data

Can make use of short-term and long-term dependencies in the data

Can use conditional input

Shown to work on regression-type problems

Project Aim

Compare the performance of WaveNet model and LSTM model (baseline) for one-day ahead river level forecasts.

- Primary input: River flow/stage
- Conditional input: Rainfall, river stage/flow

WaveNet Model

CNN with dilated causal convolutions dilations and specialised residual unit

Unconditional vs. Conditional Model Predictions

Results

Model	Cond. Input	Input Size	U2 mean	U2 Std	E Mean	E Std
River Variable Stage						
WaveNet	-	16	0.921	0.004	0.936	7e-04
LSTM	-	150	0.888	0.027	0.932	0.005
WaveNet	Rain, Flow	16	0.525	0.001	0.967	1e-04
LSTM	Rain, Flow	28	0.596	0.022	0.962	0.003
River Variable Flow						
WaveNet	-	128	0.918	0.002	0.930	0
LSTM	-	56	1.084	0.225	0.928	0.007
WaveNet	Rain, Stage	16	0.524	0.006	0.967	0.001
LSTM	Rain, Stage	160	0.693	0.052	0.960	0.004

Conclusion and Future Outlook

WaveNet model can replace LSTM as gold standard for river level forecasting

 Performance improvements through additional conditioning series and long-term dependencies

Further validate model and extend prediction horizon