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Motivation & objective
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Why is it important to capture long-term behavioral dependencies in occupant behavior 

models to tackle climate change?

 Occupant behavior has a significant impact on the dynamics of 

household energy consumption [1]

 Existing studies try to simulate occupant behavior to explain 

aggregated energy demand [2,3,4]

 Decarbonisation of domestic energy demand (electricity, heat, mobility)

 New technologies: heat pumps, electric vehicles, batteries,…

Flexibility potential

Representing long-term dependencies in occupant behavior models in order to

generate high quality synthetic activity schedules

Low quality individual occupant activity schedules
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Input data
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Mobility dataActivity data

 National representative samples (30 countries)

 Highly differentiated states of activity

 Information about two to three individual days

 This study: German TUD [5]

 National representative samples (DE, UK, …)

 Longitudinal mobility study

 Information about mobility patterns over one week

 This study: German Mobility Panel (MOP) [6]
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Model architecture
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Input & first layers
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Autoregressive & imputation model
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Exemplary results

NIPS 2020 - Tackling Climate Change with Machine Learning workshop - Using attention to model long-term dependencies in occupancy behavior

Weekly activity schedule (age: 55, job: full time) Weekly activity schedule (age: 15, job: student)

State: mobile (driving car) Hamming distance weekdays

mean + .25/.75 quantiles

empirical

attention

markov
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| 𝑡 ∈ 1,… , 𝑇𝑑 | 𝑠𝑑1,𝑡 ≠ 𝑠𝑑2,𝑡 | ∀ 𝑛 ∈ 𝑁

 Aggregated metrics:

 State probability

 State duration

 State autocorrelation

 Weekly appearances of state

 Hamming distance between

weekdays:

 Visual control:

 Interday dependencies are

reproduced

 Behavior of different socio-

demographic groups is captured

Time of dayTime of day
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Conclusion & outlook & challenges
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Conclusion:

 Attention based models can capture complex long-term dependencies in occupancy behavior

 The diversity in behavior across the entire population and different socio-demographic groups is

adequately reproduced by the presented approach

 The approach combines the advantages of two datasets and creates a new high quality

synthetic dataset for energy system modelers

Outlook:

 Individual behavior  household behavior (challenge: quadratic memory and time complexity 

with sequence length)

 Open data  differential privacy (challenge: trade off between accuracy and privacy)
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Thanks for your attention! 
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𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝑸𝑲𝑻

𝒅𝒌
𝑽! 
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