Using attention to model long-term dependencies in occupancy behavior

Tackling Climate Change with Machine Learning workshop at NeurlPS 2020 11.12.2020

Max Kleinebrahm

Chair of Energy Economics Karlsruhe Institute of Technology Karlsruhe, Germany max.kleinebrahm@kit.edu

Jacopo Torriti

School of the Built Environment University of Reading Reading, United Kingdom i.torriti@reading.ac.uk

Russell McKenna

Chair in Energy Transition University of Aberdeen Aberdeen, United Kingdom russell.mckenna@abdn.ac.uk

Armin Ardone

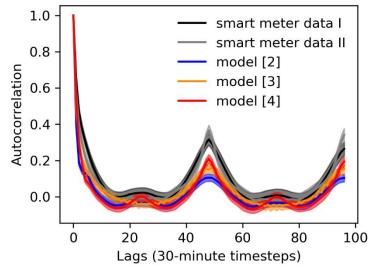
Chair of Energy Economics Karlsruhe Institute of Technology Karlsruhe Institute of Technology Karlsruhe, Germany armin.ardone@kit.edu

Wolf Fichtner

Chair of Energy Economics Karlsruhe, Germany wolf.fichtner@kit.edu

Motivation & objective

Why is it important to capture long-term behavioral dependencies in occupant behavior models to tackle climate change?

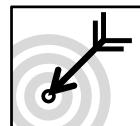


- Occupant behavior has a significant impact on the dynamics of household energy consumption [1]
- Existing studies try to simulate occupant behavior to explain aggregated energy demand [2,3,4]

Low quality individual occupant activity schedules

- Decarbonisation of domestic energy demand (electricity, heat, mobility)
- New technologies: heat pumps, electric vehicles, batteries,...

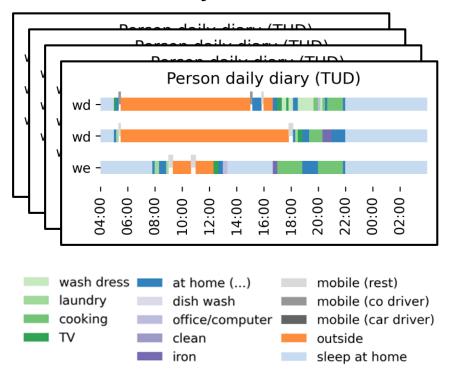
Flexibility potential



Representing long-term dependencies in occupant behavior models in order to generate high quality synthetic activity schedules

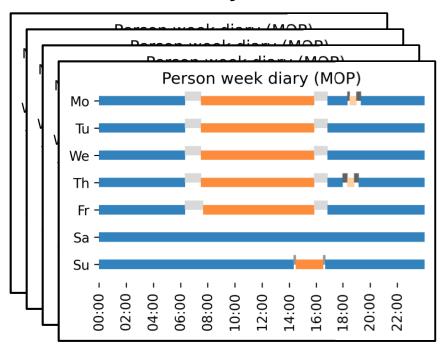
Input data

Activity data



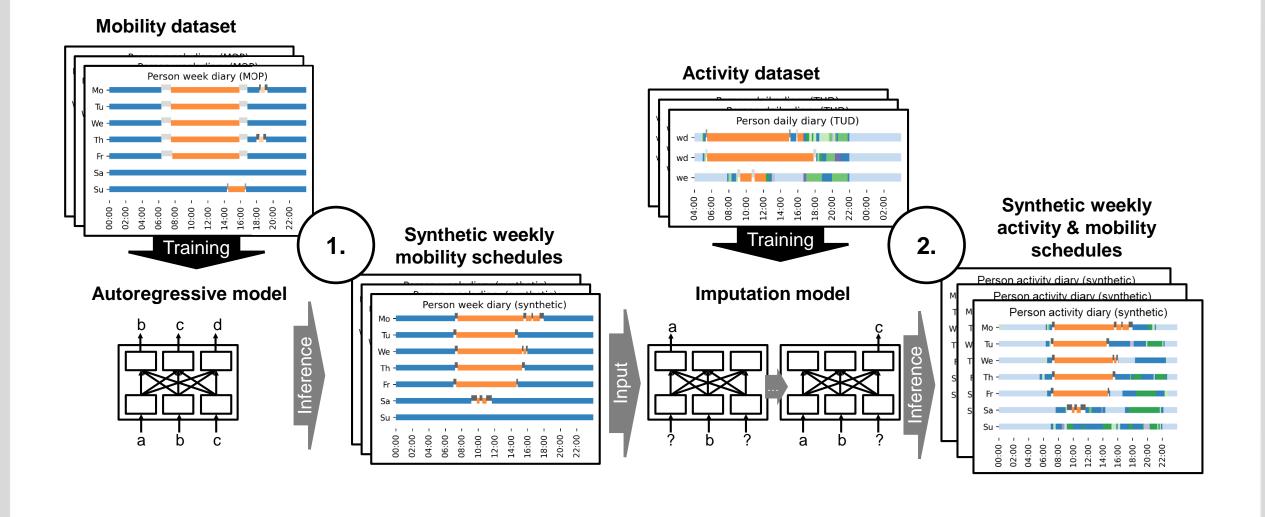
- National representative samples (30 countries)
- Highly differentiated states of activity
- Information about two to three individual days
- This study: German TUD [5]

Mobility data

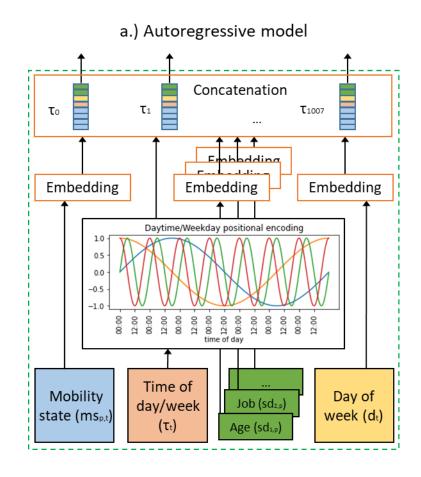


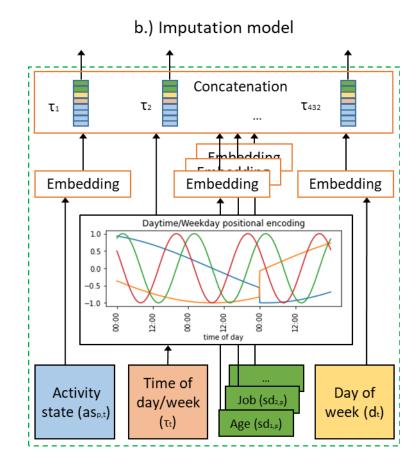
- National representative samples (DE, UK, ...)
- Longitudinal mobility study
- Information about mobility patterns over one week
- This study: German Mobility Panel (MOP) [6]

Model architecture

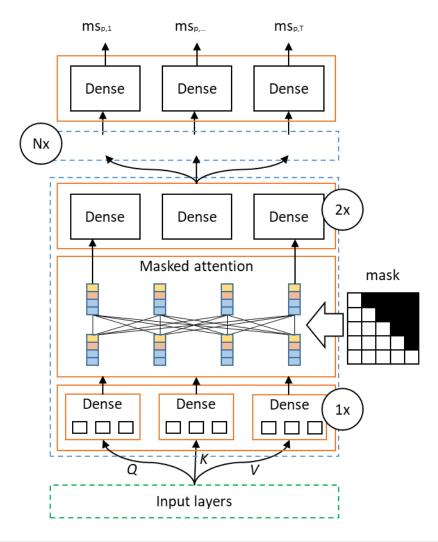


Input & first layers

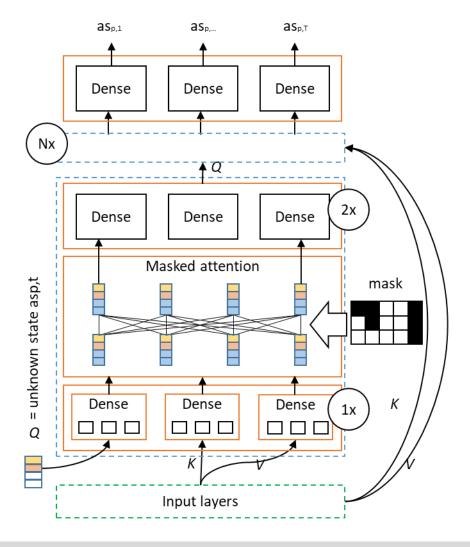




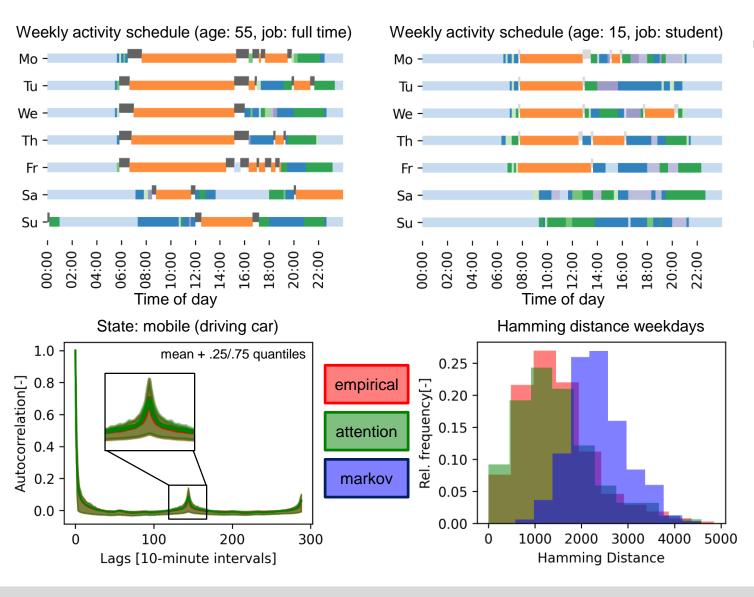
Autoregressive & imputation model



b.) Imputation Transformer



Exemplary results



Visual control:

- Interday dependencies are reproduced
- Behavior of different sociodemographic groups is captured

Aggregated metrics:

- State probability
- State duration
- State autocorrelation
- Weekly appearances of state
- Hamming distance between weekdays:

$$hd_n = \sum_{d_1=1}^{5} \sum_{d_2=1}^{5} |\{t \in \{1, ..., T_d\} | s_{d_1, t} \neq s_{d_2, t}\}| \quad \forall n \in \mathbb{N}$$

Conclusion & outlook & challenges

Conclusion:

- Attention based models can capture complex <u>long-term dependencies</u> in occupancy behavior
- The <u>diversity in behavior</u> across the entire population and different <u>socio-demographic groups</u> is adequately reproduced by the presented approach
- The approach combines the advantages of two datasets and creates a <u>new high quality</u> synthetic dataset for energy system modelers

Outlook:

- Individual behavior → household behavior (challenge: quadratic memory and time complexity with sequence length)
- Open data → differential privacy (challenge: trade off between accuracy and privacy)

Thanks for your attention! $\operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V!$

Literature

- [1] Koen Steemers and Geun Young Yun. Household energy consumption: A study of the role of occupants. Building Research & Information, 37(5-6):625–637, 2009.
- [2] Richardson, Ian; Thomson, Murray; Infield, David; Clifford, Conor (2010): Domestic electricity use. A high-resolution energy demand model. In *Energy and Buildings* 42 (10), pp. 1878–1887. DOI: 10.1016/j.enbuild.2010.05.023.
- [3] Fischer, David; Härtl, Andreas; Wille-Haussmann, Bernhard (2015): Model for electric load profiles with high time resolution for German households. In *Energy and Buildings* 92, pp. 170–179. DOI: 10.1016/j.enbuild.2015.01.058.
- [4] Pflugradt, Noah Daniel (2016): Modellierung von Wasser und Energieverbräuchen in Haushalten. Available online at http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209036, checked on 4/12/2018.
- [5] Destatis (2006): Zeitbudgeterhebung: Aktivitäten in Stunden und Minuten nach Geschlecht, Alter und Haushaltstyp. Zeitbudgets Tabellenband I. 2001/2002. Wiesbaden. Available online at https://www.statistischebibliothek.de/mir/receive/DEMonografie_mods_00003054.
- [6] Weiß, Christine; Chlond, Bastian; Hilgert, Tim; Vortisch, Peter (2016): Deutsches Mobilitätspanel (MOP) wissenschaftliche Begleitung und Auswertungen, Bericht 2014/2015. Alltagsmobilität und Fahrleistung, checked on 10/22/2019.