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Abstract

Microgrids – self-contained electrical grids that are capable of disconnecting from
the main grid – hold potential in both tackling climate change mitigation via
reducing CO2 emissions and adaptation by increasing infrastructure resiliency.
Due to their distributed nature, microgrids are often idiosyncratic; as a result,
control of these systems is nontrivial. While microgrid simulators exist, many
are limited in scope and in the variety of microgrids they can simulate. We
propose pymgrid, an open-source Python package to generate and simulate a
large number of microgrids, and the first open-source tool that can generate more
than 600 different microgrids. pymgrid abstracts most of the domain expertise,
allowing users to focus on control algorithms. In particular, pymgrid is built to be a
reinforcement learning (RL) platform, and includes the ability to model microgrids
as Markov decision processes. pymgrid also introduces two pre-computed list of
microgrids, intended to allow for research reproducibility in the microgrid setting.

1 Introduction
Microgrids are defined as "a cluster of loads, distributed generation units and energy storage systems
operated in coordination to reliably supply electricity, connected to the host power system at the
distribution level at a single point of connection, "the point of common coupling" (PCC)" (Figure 1)
Olivares et al. [2014]. First introduced in 2001, microgrids can also be completely autonomous and
disconnected from the grid (off-grid) Lasseter et al. [2001].

Microgrids are one of the few technologies that can contribute to both climate change mitigation - by
decreasing greenhouse gas emissions – and adaptation, by increasing infrastructure resiliency Taft
[2017] to extreme weather events. Further research is still necessary to fully integrate renewables and
reduce costs in order to make widespread microgrid adoptation feasible. Today, one billion people
do not have access to electricity; this technology can be used to bring clean energy to communities
that are not yet connected to the grid. The importance of bringing clean energy to these communities
extends beyond the impact of climate change: indoor pollution, notably the use of dirty fuel for
cooking, is a major public health challenge in the developing world Bruce et al. [2000].

Due to their distributed nature, microgrids are heterogeneous and complex systems, potentially
equipped with a wide range of generators and employed in a myriad of applications. In addition, as
load and renewable generation are stochastic, microgrids require advanced metering and adaptative
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control to maximize their potential. Current technical limitations include the amount of solar that
can be integrated while the microgrid operates in islanded mode – the controller needs to maintain
stability and power quality – as well as the standardization of such controllers, necessary in order
to bring down cost and accelerate their deployment Farrokhabadi et al. [2020]. Furthermore, as the
grid becomes increasingly digital, ever increasing data processing capabilities are required Abe et al.
[2011]. A motivation for this package is to develop tools that can best integrate with the grid of the
future.

Microgrid control can be categorized in three main levels. In primary control, voltage and frequency
are controlled in a to sub-second time scale. At the secondary level, control focuses on steady state
energy control to correct voltage and frequency deviation. Finally, tertiary control – the focus in
pymgrid – concerns itself with the long term dispatch of the various generators for optimizing the
operational cost of the microgrid.

In our review of the literature surrounding tertiary control, we observed two main limitations: first,
a lack of open-source microgrid models, and second, a lack of a standard dataset to benchmark
algorithms across research groups (along with standard performance measurement). Together, these
lead to a lack of reproductibility and a difficulty in validating published algorithms.

In this paper, we introduce pymgrid 2, an open-source python package that serves as a microgrid
virtual environment.

Through pymgrid, we propose two list of pre-compute microgrids, pymgrid10 and pymgrid25.
Our intention is for them to be used as benchmark scenarios for algorithm development, allowing for
more robust research reproductibility.

Figure 1: Overview of a microgrid

2 Prior Work

Open source Python power systems simulators exist; however, they are often limited in scope Thurner
et al. [2018], Brown et al. [2018]. Considerations of microgrids in the literature focus on large-scale
power systems Patterson et al. [2015], Bonfiglio et al. [2017]. An open-source simulator in the
OpenAI gym environment, representing a microgrid for RL, exists, but targets primary control
applications Bode et al. [2020], Brockman et al. [2016]. Other models are available on GitHub but
either do not simulate tertiary control, are difficult to scale to multiple microgrids or do not allow for
straightforward RL integration DRL, Mic [a,b]. To the best of the authors knowledge, there does not
exist an open source simulator for a large number of microgrids focusing on tertiary control as of
September 2020.

As discussed in Rolnick et al., machine learning (ML) algorithms hold promise in power systems and
grid related topics. RL and control are listed as relevant for enabling low-carbon electricity. Histor-
ically, the field has leveraged ML for forecasting, anomaly detection or uncertainty quantification
Bhattarai et al. [2019].

However, with recent advances in RL and algorithms beating the world champion of Go, an increasing
number of researchers are interested in applying RL to grid-related control applications Silver et al.

2https://github.com/Total-RD/pymgrid
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[2016]. In Glavic et al. [2017], Zhang et al. [2018], Vázquez-Canteli and Nagy [2019], Mahmoud
et al. [2017], the authors propose reviews of reinforcement learning applications to power systems
and the grid. In 2020, the Learning to Run Power Networks Challenge will take place, challening the
community to build a Reinforcement Learning agent to manage the real-time operations of a power
grid Kelly et al. [2020].

3 Pymgrid

pymgrid consists of three main components: a data folder containing load and PV production time
series that are used to ’seed’ microgrids, a microgrid generator class named MicrogridGenerator,
and a microgrid simulator class called Microgrid.

3.1 Data Collection
In order to easily generate microgrids, pymgrid ships with load and PV production datasets. The load
data comes from DOE OpenEI 3, and is based on the TMY3 weather data; the PV data is also based
on TMY3 and is made available by DOE/NREL/ALLIANCE 4. These datasets contain a year long
timeseries with a one hour time-step for a total of 8760 points. Included in the datasets are load and
PV files from five cities, each within a different climate zone in the US.

3.2 Microgrid

This class contains a full implementation of one microgrid; it contains the time series data and the
specific sizing for one microgrid. Microgrid implements three families of functions: the control loop,
two benchmark algorithms, and utility functions.

A few functions need to be used in order to interact with a Microgrid object. The function run() is
used to move forward one time step, it takes as argument a control dictionary and returns the updated
state of the microgrid. The control dictionary centralizes all the power commands that need to be
passed to the microgrid in order to operate each generator at each time-step. Once the microgrid
reaches the final time-step of the data, its done argument will pass to True. The reset() function
can be used to reset the microgrid at its initial state, emptying the tracking data structure and resetting
the time-step. Once a control action is applied to the microgrid, it will go through checking functions
to make sure the commands respect the microgrid constraints.

For reinforcement learning benchmarks and more generally for machine learning, another extra
function is useful, train_test_split() allows the user to split the dataset in two, a training
and a testing set. The user can also use reset() to go from the training set to the testing set, using
the argument testing = True in the reset function. An example is provided in Listing.

3.3 MicrogridGenerator class
MicrogridGenerator contains functionality to generate a list of microgrids. For each requested
microgrid, the process proceeds as follows. First, the maximum power of the load is generated
randomly. A load file is then randomly selected and scaled to the previously generated value. The
next step is to automatically and randomly select an architecture for the microgrids. PV and batteries
are always present – this might evolve in the future as we add more components – and we randomly
choose if we will have a diesel generator (genset), a grid, no grid or a weak grid (a grid-connected
system with frequent outages). In the case of a weak grid, we also implement a back-up genset; if
there is either a grid or a weak grid, an electricity tariff is randomly selected. The electricity tariffs
are generated by MicrogridGenerator, and are based on commercial tariffs in California and France.

Once the architecture is selected, the microgrids need to be sized. First, a PV penetration is calculated
(as defined by NREL as load maximum power / PV maximum power, in Hoke et al. [2012]) and this
value is used to randomly scale the selected PV profile. Generated grid sizes are guaranteed to be
larger than the maximum load, and the genset provides enough power to fulfill the peak load. Finally,
batteries are capable of delivering power for the equivalent of three to five hours of mean load.

Once the different components are selected and sized, MicrogridGenerator creates a Microgrid.
This process is repeated to generate a number of user-requested microgrids.

3https://openei.org
4https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
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Overall, with five load files, five PV files, two tariffs, three types of grid, and the binary genset choice,
the model can generate more than 600 different microgrid – before even considering the number of
possible different PV penetration levels.

4 Benchmarks and Discussion

In addition to the aforementioned capabilities, we proposing two standard microgrid lists:
pymgrid10 and pymgrid25, containing 10 and 25 microgrids, respectively. pymgrid10 has
been designed as a first dataset for users new to microgrids. It contains 10 microgrid with the same
architecture (PV + battery + genset) and is mostly aimed to gain some intuition for what is happening
in the simulation. In pymgrid25, all the possible architectures can be found over 25 microgrids.
There are four microgrids with only a genset, three with a genset and a grid, nine with only a grid, and
nine with a genset and a weak grid. As we propose these collections of microgrids as a standardize
test set, we also implement a suite of control algorithms as a baseline comparison. Specifically, we
implement four algorithms: rule-based control, model predictive control (MPC), Q-learning, and
decision tree (DT) augmented Q-learning. Levent et al. [2019]. Table 1 present the results obtained
by running this suite on pymgrid25. By examining the results, we see that MPC with a perfect
forecast can be viewed as nearly optimal while the RBC can be viewed as a lower bound as it gives
the performance achievable by a simple algorithm. The bold values indicate the best performing
non-MPC algorithm.

Table 1: Numerical results on pymgrid25

Architecture Metric (k$) MPC Rule-based Q-learning Q-learning + DT

All Mean cost 11,643 19,265 389,234 13,385
Total cost 291,086 481,636 9,730,870 334,624

Genset only Mean cost 19,722 57,398 337,385 24,777
Total cost 78,890 229,593 1,349,543 99,109

Grid only Mean cost 8,150 8,372 383,105 8,524
Total cost 73,352 75,350 3,447,945 76,718

Grid + Genset Mean cost 19,107 22,327 480,107 22,376
Total cost 57,322 66,982 1,440,322 67,130

Weak grid Mean cost 9,058 12,190 388,118 10,185
Total cost 81,522 109,711 3,493,059 91,666

As we can see in Table 1, there are wide variations in the performance of the algorithms. Q-learning
performs poorly; however, DT-augmented Q-learning outperforms the RBC – the mean cost of RBC is
approximately 44% greater than DT-augmented Q-learning – with most of the difference occuring in
edge cases, where RBC performs poorly as it lacks algorithmic complexity. While the DT-augmented
Q-learning can perform well, it is still fatally flawed by the necessity of using a discrete action space;
this requirement reduces the scope of actions the Q-learner is able to learn, and it is exceedingly
difficult to ensure that all possible actions are considered in any given discrete action space. In six of
the microgrids, RBC outperforms the DT-augmented Q-learning; this suggests that the DT Q-learning
may not be able to consistently exceed an acceptable performance lower bound. This issue generally
arises in microgrids with only a grid or with a grid and a genset.

While the difference between the DT-augmented Q-learning and the MPC often appears to be
marginal, it is useful to keep in mind that these 25 microgrids have loads on the order of megawatts;
as a result, a 13% difference can account for $40 million in additional costs. To fight climate change
and integrate more renewables, the technology would need to scale beyond the thousands of system
deployed. A few percentage points gained could tremendously reduce the operating costs, thus
increasing the importance to improve controller performance. RL being a promising solution to
achieve this goal.

5 Conclusion and Future Work
pymgrid is a python package that allows researchers to generate and simulate a large number of
microgrids, as well as an environment for applied RL research. We establish standard microgrid
scenarios for algorithm comparison and reproducibility, and provide performance baselines using
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both classical control algorithms and reinforcement learning. In order to improve RL-based microgrid
controllers, it is critical to have a universal and adaptable baseline simulator – a role which pymgrid
fills. A promising new avenue, is to leverage data generated from multiple microgrids to either
increase performance or adaptability.

Immediate plans include the addition of a wider suite of benchmark algorithms, including extensive
state of the art reinforcement learning approaches. We also plan to allow for additional microgrid
components, more complex use cases, and finer time resolution. In addition, we hope to incorporate
the ability to pull real-time data. Finally, functionality surrounding carbon dioxide usage and data
is valuable in allowing for users to control for carbon efficiency, along with allowing the user to
consider roles that carbon tariffs may play in the future of energy generation.
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