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Knowing where crops are being grown is important
In adapting to and mitigating climate change
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Agriculture is very region specific, so it can be
challenging to construct crop maps in areas with few
data points




In previous work, we developed an LSTM-based
model to develop maps in data-sparse areas using
global datasets
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To generate a crop map for Kenya, we combined a
global dataset with 3 Kenya-specific datasets
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To respond to food system shocks, in season crop
maps are important
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For in-season crop mapping, we trained an LSTM to
complete a partial time-series
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The forecaster successfully predicted trends when
given 5 months of input data
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The LSTM-classifier was trained on both the
forecasted and raw input

Forecaster

@ N

Seen

Future preds

Forecasted labels

\

Classifier

Seen

Future

.

1

Raw-only labels

Etotal = Eencoder = = (Acclassiﬁer ( Xobserved) + Eclassiﬁer (Xforecasted ))

2




This improved results compared to passing the
partial inputs to the classifier
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We used the LSTM-classifier and the combined
system to produce crop maps for Busia and Kenya

Accuracy Precision Recall F1

0.86 0.77 0.92 0.84
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(b) In-season cropland probability map
(a) Cropland probability map for Kenya (2019) for Busia county (2020)



Conclusion

Conclusion:

- We present an LSTM crop / non crop classifier and a forecaster for
multispectral time series data. We use these models to produce high
resolution (10m) crop maps of Kenya (post-season) and Busia (in-season)

Future work:

- Extending this method for crop-type mapping
- Using these methods to generate crop-maps for previously unseen regions
with sparse labelled data



These maps can be explored and downloaded on
Google Earth Engine

1 yvar image = ee.Image('users/gabrieltseng/busia_cropland_binary_in_season');
2~ var busia_cropland = {

3 min: 0.0,

max: 1,

palette: ['#000004', '#2C105C', '#711F81', '#B63679', '#EE6OQ5E', '#FDAE7¢

Map.addLayer(image.select (@), busia_cropland);
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Thank you!

Code, maps, data are available at: https://github.com/nasaharvest/kenya-crop-mask



https://github.com/nasaharvest/kenya-crop-mask

