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Abstract

Accurately forecasting the weather is a key requirement for climate change mitiga-
tion. Data-driven methods offer the ability to make more accurate forecasts, but
lack interpretability and can be expensive to train and deploy if models are not
carefully developed. Here, we make use of two historical climate data sets and tools
from machine learning, to accurately predict temperature fields. Furthermore, we
are able to use low fidelity models that are cheap to train and evaluate, to selectively
avoid expensive high fidelity function evaluations, as well as uncover seasonal
variations in predictive power. This allows for an adaptive training strategy for
computationally efficient geophysical emulation.

1 Introduction

While numerical weather forecasting dates back over a century [10], climate change is expected to
significantly alter the predictability of the atmosphere, increasing the error of weather forecasts [18].
Simultaneously, climate mitigation requires more accurate forecasts of weather events for power
grid optimization [1], and extreme event prediction [20], from flooding [9], to heatwaves [6]. Even
the largest climate simulations have O(10 km) separation between grid points, meaning dynamics
of smaller scales can not be explicitly resolved [14, 17, 15], and often ad-hoc closure conditions
are postulated to account for the unresolved dynamics. Machine learning has the potential to find
data-driven closure conditions [16] and parameterize sub-grid scale modeling [3, 7]. Convolutional
neural networks can forecast weather [4], deep learning can predict extreme weather events [5], and
neural network architectures can be optimized automatically to enhance the quality of forecasts [11, 2].
However, these models can become expensive to train and deploy, especially when ensemble predic-
tions are required [8], and often their predictions lack interpretability. Here, we use a combination
of proper orthogonal decomposition (POD), and long-short term memory (LSTM) reccurent neural
networks to create forecasts for two real-world data sets. In addition to the LSTM network, which
is our high-fidelity (HF) model, we introduce simpler or low-fidelity (LF) models, which do not
have the same predictive power, but are faster to deploy. By studying the prediction differences
of the LF models, we are able to selectively avoid HF function evaluations, as well as uncovering
seasonal variations in prediction accuracy. With the proliferation of data driven methods for climate
forecasting, the approach introduced here, could be used to reduce computational resources, which
is of particular relevance for ensemble forecasting [8], as well as to identify uncertainties in neural
network predictions.

2 Proper Orthogonal Decomposition

To first reduce the dimensionality of the problem, we project spatially resolved fields, such as
temperature, onto a set of principal modes which capture the salient features and then track the
evolution of these modes in time. We use the technique of Proper Orthogonal Decomposition (POD)
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Figure 1: Proper orthogonal decomposition of sea surface temperature. (a) Historical climate data
measuring ocean surface temperature weekly from 1981 to 2000. (b) Evolution of the first 3 modal
coefficients, together with their respective basis elements. (c) Reconstructed temperature field from
first the 6 modal coefficients against measured temperature field.

in order to find the dominant modes [21, 12, 13]. In short, suppose we are given spatial snapshots of the
data at various times, θ1, . . . ,θT . We take a truncated set of orthonormal basis vectors v1, . . . ,vM ,
that approximates the spatial snapshots optimally with respect to the L2 norm, i.e. minimizing∑T

i ||θi −φi||2 over φi ∈ Span{v1, . . . ,vM}. Defining the snapshot matrix, S = [θ1| · · · |θT ], the
optimal basis is given by the M eigenvectors of SST , with largest eigenvalues [21], which is readily
found numerically. See appendix A, for further details.

3 NOAA sea surface temperature

Our first data set is the NOAA Optimum Interpolation SST V2 data set, containing the sea surface
temperature weekly on a 1 degree grid across the period 1981-2018 1. The first 20 years were used as
training data, the rest was reserved for testing. From this, we build data driven forecasts, predicting
the next 5 weeks of temperature evolution from historical data. We project the system onto the first
6 POD modes, which is sufficient to approximate the temperature field (Fig. 1), and examine the
evolution of these modal coefficients (Fig. 1a-b). From predictions of the modal coefficients, we can
reconstruct the temperature field and test the temperature predictions at a sensor located at a specific
coordinate, Fig. 2. The baseline to improve on is the climatology prediction; the historical average
temperature at that specific location for the time of year.

For our purposes, we will use a bi-directional LSTM network [19] as our high-fidelity model, taking
5 weeks of historical data as input and making a 5 week forecast. This model is proto-typical for
more complex machine learning models that could be deployed on data like this [11]. In short, a
bi-directional LSTM is a recurrent neural network, that instead of acting purely sequentially on the
data, has an additional pass backwards in time, Fig. 3c, in practice improving predictive power. In all
cases, we take the first 20 years as training data, and use the remainder for testing. We compare the
LSTM predictions against the recorded temperature and climatology baseline, Fig. 2, finding that
while both the climatology and LSTM forecast captures the seasonal trends, the LSTM predictions
have lower L2 error and cosine norm closer to 1, as compared to the recorded temperature, than the
climatology prediction for all sensors tested.

Our aim now is to investigate when and where the model breaks down, as well as identifying where
expensive HF function evaluations can be avoided, and substituted for low-fidelity alternatives. To
do so, we introduce two LF models. The first is linear regression, applied autoregressively to each
mode individually, with an input window of 5 weeks, and making a single prediction. The best linear
model is fitted to the training data for a particular mode, and then applied to the testing data. The
second is a random forest regressor [22], which takes in all 5 weeks of input, and trains a model to
predict each modal coefficient across the forecast. This works by training 100 decision trees on the
input sequence, and then taking an average of the results as the output, Fig. 3d.

Unsurprisingly, the LF models perform worse on testing data than the HF one, Fig. 3(a,b). However,
the low-fidelity models are extremely cheap to train and evaluate, we therefore seek to make use of

1Available at https://www.esrl.noaa.gov/psd/
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Figure 2: Sea surface temperature at 4 randomly chosen sensors (orange points) for the first 4 years of
testing data (2002-2006), with POD-LSTM prediction and climatology baseline. After training, the
LSTM model was applied non-autoregressively, making 5 weeks of predictions at a time. The spatial
predictions were then reconstructed from the POD basis. Also shown is the climatology baseline.
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Figure 3: Comparison of high and low-fidelity models. (a) Input and predictions for a representative
test example, true modal coefficients are solid lines, predictions are dashed. (b) Distributions of
forecast errors for the testing data. (c) Architecture of the bi-directional LSTM, in our case n = 10.
The input information travels forwards through time, and then backwards again to allow for a
more accurate global prediction. (d) Architecture of the random forest; the input is sent to several
decision trees, and their result is aggregated at the end for a prediction. (e) Total error of adaptive
meta-modeling strategy against the optimal and random strategy

them whenever possible. Suppose now that we have a limited computational budget for evaluating
a number of forecasts, and so are forced to use a mixture of HF and LF models. If we made the
choice randomly with probability p for the HF model, we would expect the average error to be
p× (HF average error) + (1− p)× (LF average error). Similarly, we expect the computational cost
to be p× (HF cost) + (1− p)× (LF cost). We will use the two LF models to create a meta-modeling
strategy that achieves lower error than the random strategy for the same computational cost. The
strategy is as follows:

1. Take input data and perform the random forest and linear forecasts.
2. Calculate the difference between the predictions.
3. If this difference exceeds some threshold, evaluate the HF model. If not, stick with the LF

model.

This simple strategy using two LF models significantly outperforms the random strategy, Fig. 3e.
Moreover, it performs similarly to the theoretical optimum strategy, defined as the best possible
choice of HF and LF evaluations, given their values and the true value in advance. This optimum
strategy is clearly not viable in practice, yet the meta-model strategy performs similarly.

4 DayMet North America Daily Surface Temperature

We now validate the ideas we have introduced on an alternative data set. We consider the forecasting
problem for the Daymet data set2, containing the maximum daily temperature field across North

2available at https://daymet.ornl.gov/
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Figure 4: (a) Maximum daily temperature field across North America in 2011, representative
seasonal snapshots shown. (b) Temporal evolution of the first four POD modes of the temperature
field across one year, together with their representative basis elements. (c) Reconstruction of the
temperature field from 4 modes against the true value.
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Figure 5: (a) Forecasting error distribution for HF and LF models. (b) Seasonal prediction error,
averaged across 5 years of testing data and over a window of 5 days. (c) Seasonal prediction difference
between models. Model predictions were made, and the norm of their difference was calculated and
averaged as in (b). Difference between LSTM and linear models recovers seasonal trend in error.
(d) Total error of meta-modeling strategy against the theoretical optimum and random strategy. (e-f)
Seasonal distribution for where the LF model is evaluated for 25% and 50% LF model evaluations.

America for 2000-2015, Fig. 4. The first 11 years are used as training data, the rest is reserved for
testing. The temperature over land is more variable than the sea temperature, so here we forecast 7
days from 7 days of historical data, and take only the first 4 POD modes.

The bi-directional LSTM has the lowest total prediction error, Fig. 5, and outperforms the climatology
baseline for all sensors tested. The linear model performs almost as well, and both perform better than
the random forest, Fig. 5a-b. Beyond overall error analysis, we aim to interrogate where predictions
break down. Averaging the prediction error across 5 years of testing data, we find that error varies
with season, with the worst predictions in winter, Fig. 5c. Examining the difference between models,
we also find this seasonal variation, meaning we need not know the error to deduce the regions of low
predictive power, Fig. 5d. On this data, the meta-model approach is almost as good as the theoretical
optimum strategy, Fig. 5d. Under this strategy, we see that in the summer when the LF models agree,
a LF model is used for prediction, whereas in the winter the HF model is used, Fig. 5e-f.

5 Summary

In this work, we considered the forecasting problem for two real-world geophysical data sets, the
NOAA sea surface temperature and the NASA Daymet land surface temperature data for North
America. We confirmed that the combination of dimensionality reduction through proper orthogonal
decomposition and recurrent neural network based predictions outperforms a climatology baseline.
While the neural network prediction outperforms simple random forest and linear predictions, we
were able to extract information from these LF models nevertheless. Specifically, by using the two LF
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models, we were able to devise a simple rule for deciding whether to use a HF or LF model, which
allowed a near optimal decision strategy. When used as a strategy for complicated architectures, this
could allow substantial computational savings, especially when ensemble predictions are required.
We were further able to use the LF models to understand seasonal variation in predictive power,
finding that our models predictive power is highest in the summer for land surface temperature, a
valuable insight for climate modeling. In future, it will be of interest to apply this to more advanced
network architectures.
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A Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) provides a systematic method to project dynamics of a
high dimensional system onto a lower dimensional subspace. We suppose that a single snapshot of
the full system is a vector in RN , where N could be the number of grid points at which the field is
resolved. Observing the system across a number of time points gives us the snapshots θ1, . . . ,θT ,
with mean subtracted by convention. The aim of POD, is to find a small set of orthonormal basis
vectors v1, . . . ,vM , with M � N , which approximates the spatial snapshots,

θt ≈
M∑
j=1

aj(t)vj , t = 1, . . . , T, (1)

and so allows us to approximate the evolution of the full N dimensional system, by considering only
the evolution of the M coefficients aj(t). POD chooses the basis, vj , to minimize the residual with
respect to the L2 norm,

R =

T∑
t=1

||θt −
M∑
j=1

aj(t)vj ||2. (2)

Defining the snapshot matrix, S = [θ1| · · · |θT ], the optimal basis is given by the M eigenvectors
of SST , with largest eigenvalues, after which, the coefficients are found by orthogonal projection,
aj(t) = 〈θt,vj〉 [21].

For both of our data sets, we take only the training data snapshots, sayD1, . . . ,DT , from which we
calculate the mean D̄ = (1/T )

∑
tDt, hence defining the mean subtracted snapshots θt = Dt − D̄.

We then create the snapshot matrix, S, and find numerically the M eigenvectors of SST with largest
eigenvalues. From this, we train models, N , to forecast the coefficients

a(t + 1) ≈ â(t + 1) = N (a(t),a(t− 1), . . . ). (3)

making predictions of future coefficients given previous ones.

To test the predictions on unseen data, E1, . . . ,Ek, we take the mean D̄, and vectors vj calculated
from the training data to get that

aj(t) = 〈Et − D̄,vj〉, j = 1, . . . ,M, (4)

which will be used by the model N to make a prediction for future coefficients. The prediction for
the coefficients â, can be converted into predictions in the physical space by taking D̄ +

∑
j âjvj .

This procedure only makes use of testing data to pass into the model, not to train the model in any
way. Crucially, to make a forecast of Et+1, only previous measurements Et,Et−1, . . . are needed.
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