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Introduction

• Sentinel

• Pleiades

• SPOT

• Landsat

• huge volume of medium to high resolution multi-
spectral images

• Acquisition every day and organized in time series

• Production of accurate land cover maps

• Monitoring of environmental changes
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Fully Convolutional Neural Network

U-NET



Fully Convolutional Neural Network

U-NET

- First we used 32 filters
instead of 64 in the first level
convolutional layers

- Second we inserted batch
normalization after each
convolutional layer to speed up
convergence.



Reducing the variance of the model
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Pixel energy = F(Surface Reflectance) = F(time)

Difference of illumination and
variation of the proportion of
light reflected from the ground
to the satellite sensor.

Surface Reflectance

- sun-target-sensor geometry

- Light polarization
- Etc,,

Varies because of 

Need to introduce time dependency



Recurrent Neural Network

Overal model

Encoding temporal dependencies with RNN

❖ At each time step t, the FCN generates a 
noisy Pmap

❖ The RNN combines this Pmap with a hidden
state coming from the previous time step to 
generate a more accurate and up-to-date 
Pmap

Update



Recurrent Neural Network- LSTM

LSTM structure



Dataset

• 16 cities chosen in Canada, USA, Africa, Europe and South 
America

• Reference data obtained from Open StreetMap

• Patches of size 512x512 generated from 10900x10900 images

• Data augmentation with vertical/horizontal flips and rotations

Patch Reference data



Results

Image and Ground truth Individual PMap for 3 days Image and overal predicton



Results
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Conclusion

• Generation of accurate and up-to-date land cover maps

• Use of temporal and spatial information

• In the next steps, measurement of changes of anthroprogenic and 
natural features on the West African Littoral.
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