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Abstract

Earth observation programs have provided highly useful information in global
climate change research over the past few decades and greatly promoted its devel-
opment, especially through providing biological, physical, and chemical parameters
on a global scale. Programs such as Landsat, Sentinel, SPOT, and Pleiades can be
used to acquire huge volume of medium to high resolution images every day. In this
work, we organize these data in time series and we exploit both temporal and spatial
information they provide to generate accurate and up-to-date land cover maps that
can be used to monitor vulnerable areas threatened by the ongoing climatic and
anthropogenic global changes. For this purpose, we combine a fully convolutional
neural network with a convolutional long short-term memory. Implementation
details of the proposed spatio-temporal neural network architecture are described.
Examples are provided for the monitoring of roads and mangrove forests on the
West African coast.

1 Introduction

Land cover can be defined as the physical features that cover the land, such as trees or pavement. A
similar notion is land use that can be defined as human management and activities on land, such
as mining or recreation. Climate can affect and be affected by changes in land cover. A forest,
for instance, would likely include tree cover but could also include areas of recent tree removals
currently covered by open grass areas. Land cover and use are inherently coupled: changes in
land-use practices can change land cover, and land cover enables specific land uses. Changes in
land cover can occur in response to both human and climate drivers. Therefore understanding
how land cover, use, condition, and management vary in space and time is important to analyze
vulnerable areas that are threatened by the ongoing climatic and anthropogenic global changes. With
a low topography, a weak geological substratum, a poor fresh water supply, and a dense and rapidly
expanding population, some littoral areas such as the West African coast for example are highly
vulnerable to current sea level rise, extreme climatic phenomena, erosion, and modifications of the
ecosystems and resources. Many Earth observation programs such as Landsat, Sentinel, SPOT and
Pleiades produce huge volume of medium to high resolution multispectral images every day that can
be organized in time series and used to produce accurate and up-to-date land cover and use maps that
can monitor environmental changes at different places and time ranges.

In the past few years, Deep learning (DL), a class of machine learning algorithms that uses multiple
layers to progressively extract higher level features from complex data, has gained attention. Deep
learning architectures, especially Fully Convolutional Networks (FCNs) show a great potential for
application to various remote sensing problems such as land cover and use mapping. However, even if
FCNs deal very well with spatial representation of features within an image, they are unable to learn
the additional information provided by the multi-temporal structure of time series images, which can
improve the land cover classification accuracy and efficiency. In addition, when applied on a single
image, they lead systematically to a variance, that depends on the day when the image was acquired.
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To capture the temporal dependency of images, Recurrent Neural Networks (RNN), a class of deep
learning architectures where connections between nodes form a directed graph along a temporal
sequence, can be used. For example, (G. Sumbul, B. Demir, 2019) present a novel multi-attention
driven system that jointly exploits Convolutional Neural Network (CNN) and RNNs in the context of
multi-label remote sensing image classification. The article (Stoian et al., 2019) proposes a framework
for working with Sentinel-2 L2A time-series image data, and an adaptation of the U-Net model for
dealing with sparse annotation data while maintaining high resolution output. In (C. Pelletier et
al., 2019), an analysis of RNN and Temporal Convolutional Neural Networks (TempCNNs) for the
classification of Sentinel-2 image time series is provided. In (Emmanuel Maggiori, 2017), RNNs are
used to correct satellite image classification maps.

In this work, we exploit both temporal and spatial information provided by multi-temporal Sentinel-2
images to generate accurate and up-to-date land cover and use maps. For this purpose, we combine a
FCN with a RNN.

2 METHODOLOGY

Our acrhitecture combines a FCN that captures the spatial representation of features in the image with
a RNN that learns the temporal variations of these features. The architecture of our FCN is based
on the U-Net. It is a symmetric encoder-decoder structure consisting of a contracting branch that
captures the context and an expanding branch that enables precise localization for the segmentation
masks. The contracting path consists of the repeated application of two 3 x 3 convolutions, each
followed by a ReLu and a 2 x 2 max pooling for downsampling. At each downsampling step, the
number of feature channels is doubled. Every step in the expansive path consists of a transpose
convolution that halves the number of feature channels, a concatenation with the corresponding
feature map from the contracting path and one 3x3 convolution. This FCN enables us to generate a
Probability Map (PMap) from an input image. The PMap is an image of the same size as the input
but with [, channels, where [, is the number of land cover or use classes. For each pixel, it gives the
probability to belong to a particular land cover or use class.

We use Sentinel-2 that acquires pictures of the Earth every five days at 10-m spatial resolution, with
3-7 days revisit frequency. These time-series data change slightly from one day to another. One
factor for example, is the sun movement that changes the sun-target-sensor geometry constantly.
As a consequence, this effect causes an additional alteration of the radiometric data on pixels with
the same land cover and similar structure. Learning only relevant information from these temporal
data and removing time-dependent variance can yield accurate and up-to-date land cover maps. To
encode temporal dependencies in the PMap, we can use RNNs. In this paper, LSTM is used to
capture the correlation among the PMap generated by the FCN for the same land cover, but with
a sequence of images taken at different dates. Then we aim to reduce the variance related to the
day of acquisition and produce a single, accurate and up-to-date probability map. For the purpose
of keeping the spatial structure of the feature map, we use Convolutional LSTM (ConvLSTM)
where matrix multiplication is replaced by convolution at each gate. ConvLSTM networks cap-
ture spatiotemporal correlations better than standard fully connected LSTM (Xingjian Shi et al., 2015).

We used a joint loss function L, combining cross entropy with a differentiable form of intersection
over union (V. Iglovikov et al., 2017):

L=aH—(1-a)log(J), (1)
with « an hyperparameter that we can tune, H the cross entropy and J the IoU.

The final architecture is shown on Fig. [I} It consists of a FCN, two ConvLSTM layers and one
convolution layer. Gerenerally, two LSTM layers are enough to detect complex features. More layers
can be better but also harder to train. The output of the FCN is sent to the first convLSTM layer. The
input is a sequence of images from the same land cover but taken at different times. The images in the
sequence are first encoded with the FCN to extract the probability maps. For each image, the output
of this operation is an image of the same size as the original one but with /. channels (number of land
cover classes). The first convLSTM combines this transformed image (x; in the equations) with its
short-term h;_; and long-term ¢;_; memories. The output is another [.-channels image that is sent to



the second convLSTM layer. Finally, the short-term memory output, h; , is linearly transformed per
pixel with the last convolution layer and scaled with a sigmoid function to obtain the final probability
map.
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Figure 1: Proposed architecture for the model

3 Dataset and Experiments

For this work we focus on mangrove and roads classes. The corresponding Sentinel-2 images
were downloaded from ESA website. The download folder contains the envelope of all resolutions
including 10m, 20m and 60m. We used the True Color Image (TCI) at 10m resolution, built from
the BO2 (Blue), BO3 (Green), and BO4 (Red) bands. We set the sequence length of the RNN to 5
images. So for each city, 5 images corresponding to 5 different acquisition days were downloaded.
Each image has a spatial resolution of 10m/pixel and a size of 10900 x 10900 pixels. We also used
vertical/horizontal flips and 0/90/180/270 degrees rotations to augment data. Data augmentation helps
in building a strong model which is less dependent on input image orientation. This is very helpful
for our model to generalize to different regions other than regions in training set. To fit large images
into GPU memory, we divided the input image into smaller patches 512 x 512 x 3 pixels. First, the
FCN is trained and then used to generate PMap sequences of length 5 to train the RNN. For both,
we used the Adam optimization algorithm, with a base learning rate of 0.1 for 10 epochs, that we
decreased to 0.01 for another 10 epochs and finally to 0.001 for the last 10 epochs.

3.1 Roads

In our dataset, roads are represented with a line in a shapefile, and very often this line is not properly
located at the center of the road. Therefore we used morphological dilation to increase the width of
the road after rasterization. We also tested dilation with a gaussian filter, but results were better with
morphological dilation. Working with single images gave us an accuracy of 92.1% during training
and 91.1% during validation. However, considering sequence of 5 images significantly increased the
accuracy to 95.1% during for training and 93.4 % for validation. Fig. [2] shows roads extracted over
the city of Saint-Louis in Senegal in 2019 (Left) and 2016 (Middle). At the right we derived new
roads constructed during that time interval. This enable us to monitor easily vulnerable areas that are
threatened by the construction of new roads.
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Figure 2: Road extraction over the city of Saint-Louis in Senegal using Sentinel-2 images

4 Mangrove

Mangrove forests are made up of a collection of saltwater tolerant tree species and that in different
parts of the world, a single mangrove forest can be made up of numerous tree species. In addition,
mangrove forests don’t exist in isolation but are situated adjacent to other forest types (such as rain
forests), arid areas, urban areas and areas that have been deforested that now contain land uses such as
aquaculture and agriculture. In addition, mangroves can exist in different geomorphological settings
including at the mouth of rivers, in coastal lagoons and in low lying areas that are under tidal influence.
Given this, we defined Areas of Interest (AOIs) on the West African coast that captured as much of
the possible variability in the appearance of mangrove forest as we could. We used a pre-existing
data set (Global Mangrove Watch Baseline 2010) to guide the selection of AOIs. Working with
single images gave us a validation accuracy of 80.1% on the West African coast region. However,
considering sequence of 5 images significantly increased the accuracy to 86.3% accuracy. Since
mangrove forests are difficult to distinguish with human eye from Sentinel-2 images, we make use
of Google view to analyse the mangrove. Fig. [3]represents the google view of the city of Douala,
Cameroon (Left) and the predicted mangrove (Middle). The ground truth is at the right. We can see
that most of the mangrove forest are detected.

Mangrove ground truth

Google map view Mangrove predicted

Figure 3: Mangrove in Douala, Cameroon

5 Conclusion

In this paper, accurate and up-to-date land cover and use maps are generated by applying a deep
learning model that exploits both temporal and spatial information provided by 10-m resolution
multi-temporal and multi-spectral satellite images. The deep learning model we designed is based
on the combination of a fully convolutional neural network with skip connections, which takes into
account spatial information, together with a convolutional LSTM layer, which exploits the temporal
information. The proposed methodology is used to identify road networks and mangrove forests from
Sentinel-2 images. Experimental results show that encoding the temporal information from the image
time series into the LSTM layer memory cells improves significantly the segmentation performance.
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