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Energy consumption by source, World AW Fossil Fuel

in Data
Primary energy consumption is measured in terawatt-hours (TWh). Here an inefficiency factor (the 'substitution’
method) has been applied for fossil fuels, meaning the shares by each energy source give a better approximation Power Pla nts
of final energy consumption.
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Note: 'Other renewables' includes geothermal, biomass and waste energy.



Fossil Fuel
Global Coal Power Power Plants

1. 30% of global GHG
emissions

2. 85% of global
electricity generation

NORTH A ®
AMERICA ®o e

3. Decreasing in many
parts of the world;
increasing in others

AFRICA

RAAN % o 4. Critical to understand
3 . these sources of
@® Ciosing @ Operating ® New Under construction emissions

Planned

Image credit: https://www.carbonbrief.org/mapped-worlds-coal-power-plants



Satellite images
+

Machine learning

Image credit: ESA

Image credit: Airbus SPOT



Emissions estimates will be made public
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CO, is measured globally by two satellites: OCO-2 and GOSAT
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Image credits: Orbiting Carbon Observatory-2 (OCO-2) Watching the Earth Breathe...Observing CO2 from Space
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Power plants emit GHGs through a chimney
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Other operational signs are visible depending on the cooling technology
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We created a ground truth dataset by joining multiple sources

Geolocation: Global Power Plant Database and Global Coal Plant Tracker
Plant fuel type, capacity, cooling technology: S&P Global Platts’ World Electric Power Plants Database

Hourly power generation data: AMPD (US), ENTSOE (Europe), AEMO (Australia)

Starting with a simple setup: predicting on or off from a single image
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We annotated cooling towers and flue stacks to focus our models

Extract patches from satellite image
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We trained 4 different types of models
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Patch CNN models were successful for mechanical/natural draft
Once-through plants are still challenging

Failure cases:

Model type Sentinel-2 | Landsat 8
mAP mAP
Plume not
Mechanical/natural draft always visible
ROI Gradient Boosted Trees 0.647 0.616 when temp high
ROI+Patch Gradient Boosted Trees 0.789 0.713 or humidity low
ROI Convolutional Neural Network 0.681 0.651
Patch Convolutional Neural Network 0.813 0.756
Once-through Smoke plume
ROI Gradient Boosted Trees 0.616 0.627 only can be
ROI+Patch Gradient Boosted Trees 0.626 0.606 difficult to see
ROI Convolutional Neural Network 0.612 0.598

Patch Convolutional Neural Network 0.623 0.566




Next step: aggregate into monthly emissions estimates
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Validating our global model will be a challenge

1) Training data is limited and may not 2) Observation times are limited
be representative of plants globally by satellite orbits
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Granular emissions data: US

Granular generation data: US, Europe, Australia

https://www.esa.int/ESA_Multimedia/lmages/2020/03/Polar_and_Sun-synchronous_orbit
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