ELECTRIC VEHICLE RANGE IMPROVEMENT BY UTILIZING DEEP LEARNING TO OPTIMIZE OCCUPANT THERMAL COMFORT

Alok Warey*, Shailendra Kaushik & Bahram Khalighi General Motors Global Research and Development

Michael Cruse & Ganesh Venkatesan Siemens Digital Industries Software

PROBLEM – EV RANGE

Energy-efficient HVAC systems are critical for increasing EV range

AAA Newsroom: Icy Temperatures Cut Electric Vehicle Range Nearly in Half

Source: AAA Newsroom, Icy Temperatures Cut Electric Vehicle Range Nearly in Half, https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf, 2019

EQUIVALENT HOMOGENEOUS TEMPERATURE (EHT)

Snapshot of weather demonstrates the concept of EHT with the "RealFeel®" forecast

^[1] T. Han, L. Huang, S. Kelly, C. Huizenga, Z. Hui, Virtual Thermal Comfort Engineering, SAE Technical Paper 2001-01-0588, 2001, https://doi.org/10.4271/2001-01-0588.

^[2] T. Han, L. Huang, A Model for Relating a Thermal Comfort Scale to EHT Comfort Index, SAE Technical Paper 2004-01-0919, 2004, https://doi.org/10.4271/2004-01-0919.

^[3] T. Han, L. Huang, A Sensitivity Study of Occupant Thermal Comfort in a Cabin Using Virtual Thermal Comfort Engineering, SAE Technical Paper 2005-01-1509, 2005, https://doi.org/10.4271/2005-01-1509.

METHODOLOGY: STEADY-STATE

DATA SPLIT

Training Data

-1535 CFD generated cases (694 Winter and 841 Summer)

Test Set

-150 CFD generated Cases (100 Winter and 50 Summer)

INPUT FEATURES/PREDICTED VALUES

► Total number of input variables/features: 104

Feature Category	# of Features	
Environmental Variables	6	
Convection HVAC Settings	14	
Glass Glazing Properties (Visible and IR)	28	
Heated Glass	6	
Radiant Heating Pads	40	
Climate Seats	8	
Heated Steering Wheel	1	
Passenger Profile	1	
	Total: 104	

► Total predicted variables: 4 (Overall EHT values for each occupant)

NEURAL NETWORK DETAILS

► Network architecture and hyperparameters tuned using Keras Tuner (Bayesian Optimization) and 5-fold cross validation on GPU nodes (NVIDIA Tesla P100).

Parameter	Search Space	
Neurons in the first hidden layer	[8-512]	
Additional hidden layers	[0-10]	
Neurons in the additional hidden layers	[8-512]	
Activation	[ReLU, ELU, Swish]	
Optimizers	[Adam, RMSprop]	
Dropout after each hidden layer	[0-0.5]	
Batch size	[4-64]	
Learning rate	[1e-5 - 1e-2]	

NEURAL NETWORK ENSEMBLE – UNIFORM AVERAGE

UNIFORM AVERAGE ENSEMBLE RESULTS USING REPEATED CROSS VALIDATION ON TRAINING DATA

UNIFORM AVERAGE ANN ENSEMBLE PERFORMANCE ON THE TEST SET

Metric	EHT: Front Left (Driver)	EHT: Front Right	EHT: Rear Left	EHT: Rear Right
MAE [°C]	1.7	2.0	1.7	1.8
RMSE [°C]	2.2	2.7	2.2	2.5
MAPE [%]	5.6	6.8	6.3	6.8

DEPLOYMENT AND FUTURE DEVELOPMENT

- ▶ Deployed an easy-to-use web-application accessible to any HVAC engineer.
- ► Enables predictions of thermal comfort for any combination of steady-state boundary conditions in real-time without being limited by time-consuming and expensive CFD simulations or climatic wind tunnel tests.
- ► A/B comparisons, estimates of EV range impact, sensitivity analysis etc.
- ➤ Future work will include addition of new cabin architectures and development of a physics-guided machine learning model to predict occupant thermal comfort under transient conditions and emissions drive cycles.

THANK YOU!

Alok Warey, Ph.D.
Staff Researcher, Vehicle Systems Research Lab
General Motors Global Research and Development
alok.warey@gm.com