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Abstract

Fine-grained distribution grid mapping is essential for power system operation and
planning in the aspects of renewable energy integration, vegetation management,
and risk assessment. However, currently such information can be inaccurate,
outdated, or incomplete. Existing grid topology reconstruction methods heavily
rely on various assumptions and measurement data that is not widely available. To
bridge this gap, we propose a machine-learning-based method that automatically
detects, localizes, and estimates the interconnection of distribution power lines and
utility poles using readily-available street views in the upward perspective. We
demonstrate the superior image-level and region-level accuracy of our method on a
real-world distribution grid test case.

1 Introduction

Distributed Energy Resources (DERs) such as photovoltaic (PV) and wind power generators are
widely adopted at an unprecedented pace. For example, the cumulative global PV capacity is
estimated to be 500GW in 2018 with a 20% annual increment, and projected to be over 1100GW
in 2023 [1]. While these DERs play an increasingly important role in decarbonizing the energy
sector and addressing climate change, their deep penetration into the power systems poses significant
challenge on grid stability and resilience due to the bidirectional power flow they create. Integration
of DERs to the power grids requires the detailed knowledge of the grid connectivity, especially that of
distribution grid. However, unlike transmission networks whose connectivities are well documented,
the topology information of distribution grid can be outdated, inaccurate, and even unavailable
due to frequent grid reconfiguration and poor knowledge on the connectivity of privately-owned
DERs. OpenStreetMap [2] collects the geolocation information of power lines and utility poles using
crowdsourcing method yet it is far from complete. Existing works on distribution grid topology
reconstruction heavily rely on various assumptions and data availability, such as radial topology
assumption [3 4] and the availability of smart meter time-series data [} |6, [7]. However, many
distribution networks in the real world contain meshed structures, and smart meters are not widely
deployed around the world. Even in the U.S, the penetration rate of smart meters is less than 50% [8]],
and their data are owned by different private companies. Such bottlenecks limit the feasibility and
scalability of these methods and make them difficult to validate on real-world distribution networks.

The breakthrough of deep learning techniques [9] and the availability of widespread and frequently-
updated street view imagery provide an alternative approach for fine-grained infrastructure mapping.
[LO] introduced a pipeline that uses fully convolutional neural networks (FCNN) to segment the
regions of telegraph poles in street views, estimates their distance from the camera, and localizes
them with triangulation. [11]] used a fully-supervised object detection model to detect utility poles in
images, and estimate their geolocations with a simple cross bearing algorithm without the need of
monocular depth estimation. However, neither of them has detected power lines from the street views
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and used them to connect poles for a complete distribution grid map. Besides, they both relied on
fully-supervised detection or segmentation methods requiring large number of bounding boxes or
boundary annotations for training. In contrast, we propose a semi-supervised learning framework
requiring only image-level labels to detect and localize both distribution lines and utility poles in
street views towards a complete and granular distribution grid mapping. We evaluate our model
on a real-world distribution grid map in California. Besides the usage in distribution grid topology
reconstruction, grid mapping produced by our method can be further combined with tree location map,
renewable generation inventory, and weather data to facilitate various power system stakeholders in
the aspects of vegetation management, DER integration, risk assessment, and disaster prevention.

2 Methods
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Figure 1: Proposed framework, which consists of power line detection module and utility pole
detection module. Pole detection is only applied on images in which line has been detected.

Figure [T shows the model framework which is comprised of two modules: (1) A power line detection
module that takes upward street view image as input and outputs the line positions and directions
if and only if the input is classified to contain line(s). (2) A utility pole detection module that takes
upward street view image as input and outputs the bearing of the pole within the image if and only
if the input is classified to contain pole(s). Based on the assumption that a utility pole must be
accompanied by power lines in an upward street view but not vice versa, we apply pole detection
module only on images that are classified to contain line(s) to reduce false positive pole detection.
Such assumption is based on the observation of our dataset. Finally, we generate the distribution grid
map by attaching lines to their nearby poles based on geolocations and line directions.

Upward view. In contrast to previous works [10} [TT]] that used horizontal or near-horizontal per-
spective of street views to localize objects, we choose the upward view as model inputs which has
rarely been proposed in existing literature on street view object recognition. This is because there are
much fewer irrelevant objects in the upward view compared to horizontal view, while utility poles
and power lines near the streets are sufficiently high to be captured in images. Furthermore, we set
the street view heading consistently to O when retrieving images. Such specifications significantly
simplify the geometric relationships of power lines and utility poles in images, and thus facilitate the
direction estimation and localization.

Power line detection module. Training fully-supervised object detection models needs large datasets
with detailed bounding box annotations, which can be expensive and time-consuming to obtain.
Instead, we use a semi-supervised model to generate the activated regions of power lines in an
image requiring only image-level binary label indicating whether it contains line (“positive”) or not
(“negative”). We adopt the training scheme proposed in [12] (Appendix A.3). Specifically, we firstly
train a classification model to classify whether an image is positive or negative using the Inception-v3
architecture [13]]. Then we add an additional CNN branch directly connected to an intermediate layer
of the classifier and further train it for classification while keeping the main branch fixed. We use this
branch to produce Class Activation Map (CAM) [[14] that highlights line regions. Note that CAM is
generated only if the classification result is “positive”. We estimate the line directions in CAMs using
Hough transform (See details in Appendix A.1). Due to the geometric simplicity of upward views,
the direction detected in an image is exactly the actual line direction on maps.



Utility pole detection module. We use the same CNN architecture in the line detection module to
detect utility poles in input images and generate CAMs for positive detections. To localize poles
on the map, we assume all utility poles are completely vertical cylinders. In this way, any pole
appearing in an upward street view must point to the image center, and the bearing of pole can be
derived by calculating the angle between the pole and horizontal axis in the image (8 in Figure
[I). We use another Hough transform to implement this process (Details in Appendix A.2). Finally,
by intersecting the line-of-bearings (LOBs) derived from at least 2 view points and clustering the
intersections, we further obtain the exact location of poles [11]. Appendix A.4 shows an illustration.

3 Results

We randomly retrieve upward street view images using Google Street View API and construct a
dataset containing 10,000 samples. Each image is associated with two labels indicating whether it
contains lines and whether it contains poles, respectively. There are 3,204 images containing line(s)
and 1,786 images containing pole(s) (Appendix A.0). CNNs used in both modules are initialized
with weights pretrained on ImageNet. During training, each input image is rotated with an angle
randomly selected among 0°, 90°, 180° and 270° and also randomly flipped for data augmentation.

Table [T] shows the classification performance on the test set. The F1 scores (harmonic mean of
precision and recall) for both line and pole identification are higher than 92% with precisions over
97% and recalls at around 90%, which indicates superior image-level performance. We also evaluate
the region-level performance of our model on San Carlos, CA, USA. Figure 2] shows a small fraction
of the distribution grid map reconstructed by our model with the locations and connectivity of lines
and poles. We compare the pole localization accuracy of our model with that reported in [11]]. The
result is shown in Figure[3] The metrics is the percentage of annotated poles that have been detected
within a certain range, and its variation with the radius of the range is represented by orange curve for
our model, and red curve for the performance reported in [11]]. Our model significantly outperforms
[11] even though our model is semi-supervised. 78% of the actual poles can be detected by our model
within 4m, and the average localization error of detected poles is 2.25m. Such results demonstrate
the benefit of using upward views and the strength of semi-supervised learning.
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Figure 3: Pole location accuracy

precision recall F1 score

line 0.978 0.929 0.953
pole 0.973 0.882  0.925
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Table 1: Classification performance
Figure 2: Distribution grid mapping in San Carlos, CA.

4 Conclusion and Future Work

In this study, we propose a semi-supervised learning framework to identify and localize utility poles
and power lines in street view imagery for fine-grained distribution grid mapping. Future work
includes: (1) Identifying the connectivity at crossroads to complete grid topology reconstruction and
extend the model to other regions. (2) Combining solar installation database for PV integration
analysis. (3) Combining tree inventory and weather data (e.g. wind) for vegetation management (e.g.
inform tree trimming to prevent outage) and disaster prevention (e.g. fire risk assessment).
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Appendix

A.0 Dataset construction

To construct the image dataset for line and pole detection, we manually select the images that contain line(s)
among the 10,000 samples and get 3,204 such samples. Then we manually select 1,786 images that contain
pole(s) among these 3,204 samples, based on the assumption that an image that contains utility pole(s) must
contain power line(s). The dataset is finally split into train/validation/test sets following 85%-7.5%-7.5% ratio.

A.1 Hough transform (Line detection module)

Hough transform is a conventional computer vision technique which is used to detect particular shapes in images.
It can detect the shape even if it is broken or distorted. The main idea of this approach is using voting procedure
to find imperfect instances of objects with a certain mathematical expression.

Here we use Hough transform to detect lines in CAMs. For each line in an image, it can be represented as
p = xcosB + ysin b, where x, y are the pixel positions in the image and p, 6 are the line parameters. p is the
perpendicular distance from origin and 6 is the angle with respect to horizontal axis. For each activated pixel in
CAM, it will vote for a sinusoidal curve in the parameter (p, ) space, which represents all potential lines the
pixel may lie in. After all activated pixels have voted, the local maximal points in the parameter space have a
high possibility to be a line, thus the line parameters can be detected.

In order to detect multiple lines in an image, we create a mask in the CAM to cover each line once it is detected.
All the potential lines can be detected one after another by applying Hough transform to the CAM multiple
times.

A.2 Hough transform for angles (Pole detection module)

The Hough transform for angles borrows the ideas from the Hough transform for lines. Because all rays of poles
are assumed to pass through the image center, the voting procedure only accumulates among the angles of the
lines which pass through the center. And the maximal in the parameter (#) space represents the possible line.

A.3 CNN architecture

See the Inception-v3 architecture with a branch for generating CAM in Figure ]
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Figure 4: Inception-v3 architecture with a branch for generating CAM.
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Figure 5: Ilustration for cross bearing algorithm



A.4 Cross bearing algorithm

After setting a threshold for the effective radius of a street view image, Any pair of non-parallel line-of-bearings
(LOBs) within a certain range can produce an intersection which suggests that there can be a pole at the
intersection. Because one pole may be captured by more than 2 upward street views, there can be more than one
intersection for a single pole. We use a distance-based clustering method to cluster intersections into groups
for different poles. And the centroid of all intersections in a group is used to represent the location of the
corresponding pole (See Figure[5).
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