Deep Learning for Spatiotemporal Anomaly Forecasting: A Case Study of Marine Heatwaves

Ding Ning 1,2 Varvara Vetrova 1,2 Karin Bryan 1,3 Sébastien Delaux 1,4

- ¹ TAIAO Research Group
- ² School of Mathematics and Statistics, University of Canterbury
- ³ Environmental Research Institute, University of Waikato
- ⁴ MetOcean Solutions, Meteorological Service of New Zealand

ding.ning@pg.canterbury.ac.nz

Summary

- We proposed a PhD project on deep learning for spatiotemporal anomaly forecasting.
- We reviewed relevant latest deep learning methods (based on CNNs, GNNs, AEs, LSTMs, transfer learning) and their applications to the spatiotemporal anomaly forecasting.
- We used marine heatwaves as a case study. They are becoming more frequent and more intense as a result of climate change. Marine heatwaves have caused serious ecological and socioeconomic impacts.
- In future work, we aim to create a forecasting model that improves seasonal global and/or regional marine heatwave predictability.

Spatiotemporal Data

- 1. High-dimensional
- 2. Limited in extent
- 3. Temporally correlated

Example: GODAS Dataset

Variables:

Total downward heat flux at surface

Salt Flux

Sea Surface Height Relative to Geoid Geometric Depth Below Sea Surface

Momentum flux, u component

Momentum flux, v component

Salinity

u-component of current

v-component of current

Geometric vertical velocity (dz/dt)

Potential temperature

Years: 1980 to present

xarray.Dataset

▶ Dimensions: (lat: 418, level: 40, lon: 360, time: 12)

▼ Coordinates:

level	(level)	float32	5.0 15.0 25.0 3972.0 4478.0	į
lon	(lon)	float32	0.5 1.5 2.5 357.5 358.5 359.5	[
lat	(lat)	float32	-74.5 -74.16667 64.16566 64.499	[
time	(time)	float64	6.574e+04 6.577e+04 6.608e+04	į
▼ Data variables:				

date	(time)	int32	
timePlot	(time)	float32	
pottmp	(time, level, lat, lon)	float32	

► Attributes: (13)

Global potential temperature in 1980, GODAS

Marine Heatwaves

Definition: a period of at least five consecutive days for which sea water temperature is warmer than the 90th percentile based on a 30-year historical baseline period (Hobday et al., 2016).

Impacts: ecological (Holbrook et al. 2020) and socioeconomic (Hobday et al., 2018)

loss of foundation habitats

Summary of prominent recent marine heatwaves that are documented and analyzed in the literature (Frölicher & Laufkötter, 2018)

loss of species

damage to fisheries

Marine Heatwaves

Space and time scales of characteristic MHW drivers (Holbrook et al., 2019)

Deep Learning Applications for Spatiotemporal Anomaly Detection / Forecasting

1. Graph neural networks (GNNs) for multi-month El Niño forecasting (Cachay et al., 2020)

2. Graph-based spherical CNNs for atmospheric river and tropical cyclone segmentation (Jiang et al., 2019) and spherical data (Defferrard et al., 2020)

Deep Learning Applications for Spatiotemporal Anomaly Detection / Forecasting

3. CNNs combined with autoencoders (CNN-AEs) for tropical cyclone, extra tropical cyclone, tropical depression and atmospheric river detection (Racah et al., 2016)

4. Capsule neural networks (CapsNets) for multi-day heat or cold wave forecasting (Chattopadhyay et al., 2017)

Deep Learning Applications for Spatiotemporal Anomaly Detection / Forecasting

5. CNNs combined with long short-term memory (CNN-LSTMs) for hourly solar irradiance forecasting (Zang et al., 2020)

6. Transfer learning (zero-shot learning) for offline anomaly detection (Buckchash & Raman, 2021)

Research Questions

- How to select an appropriate number of predictors for spatiotemporal forecasting, what domain knowledge is required, and whether we can make the learning semisupervised or unsupervised.
- How to overcome geophysical data insufficiency, and whether we can use the generative models to create additional data.
- Whether transfer learning, including one-shot learning and zero-shot learning, can be used, and how to select appropriate relevant datasets and/or pre-trained models.
- How to tackle temporal correlations, and whether the video processing techniques can be used for spatiotemporal data.
- Whether we can use the reviewed deep learning methods that tackle spatial and/or temporal information, such as spherical convolutions, capsules, and graph reasoning, to improve the marine heatwave predictability.

References

Frölicher, T. L., & Laufkötter, C. (2018). Emerging risks from marine heat waves. *Nature communications*, *9*(1), 1-4.

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., ... & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. *Progress in Oceanography*, *141*, 227-238.

Holbrook, N. J., Gupta, A. S., Oliver, E. C., Hobday, A. J., Benthuysen, J. A., Scannell, H. A., ... & Wernberg, T. (2020). Keeping pace with marine heatwaves. *Nature Reviews Earth & Environment*, 1(9), 482-493.

Connell, S. D., Russell, B. D., Turner, D. J., Shepherd, S. A., Kildea, T., Miller, D., ... & Cheshire, A. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. *Marine ecology progress series*, *360*, 63-72.

Marine Heatwaves International Working Group. (n.d.). *Marine Heatwave News,* 2021. Retrieved June 29, 2021, from http://www.marineheatwaves.org

Holbrook, N. J., Scannell, H. A., Gupta, A. S., Benthuysen, J. A., Feng, M., Oliver, E. C., ... & Wernberg, T. (2019). A global assessment of marine heatwaves and their drivers. *Nature Communications*, 10(1), 1-13.

Cachay, S. R., Erickson, E., Bucker, A. F. C., Pokropek, E., Potosnak, W., Osei, S., & Lütjens, B. (2020). Graph Neural Networks for Improved El Niño Forecasting. *arXiv preprint arXiv:2012.01598*.

Defferrard, M., Milani, M., Gusset, F., & Perraudin, N. (2020). DeepSphere: a graph-based spherical CNN. *arXiv preprint arXiv:2012.15000*.

Jiang, C., Huang, J., Kashinath, K., Marcus, P., & Niessner, M. (2019). Spherical CNNs on unstructured grids. *arXiv* preprint arXiv:1901.02039.

Racah, E., Beckham, C., Maharaj, T., Kahou, S. E., & Pal, C. (2016). ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. *arXiv preprint arXiv:1612.02095*.

Chattopadhyay, A., Nabizadeh, E., & Hassanzadeh, P. (2020). Analog forecasting of extreme-causing weather patterns using deep learning. *Journal of Advances in Modeling Earth Systems*, 12(2), e2019MS001958.

Zang, H., Liu, L., Sun, L., Cheng, L., Wei, Z., & Sun, G. (2020). Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. *Renewable Energy*, *160*, 26-41.

Buckchash, H., & Raman, B. (2021). Towards zero shot learning of geometry of motion streams and its application to anomaly recognition. *Expert Systems with Applications*, 177, 114916.

