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Summary

e We proposed a PhD project on deep learning for spatiotemporal anomaly
forecasting.

e We reviewed relevant latest deep learning methods (based on CNNs,
GNNSs, AEs, LSTMs, transfer learning) and their applications to the
spatiotemporal anomaly forecasting.

e We used marine heatwaves as a case study. They are becoming more
frequent and more intense as a result of climate change. Marine
heatwaves have caused serious ecological and socioeconomic impacts.

e In future work, we aim to create a forecasting model that improves
seasonal global and/or regional marine heatwave predictability.
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Spatiotemporal Data

1. High-dimensional
2. Limited in extent
3. Temporally correlated

Example: GODAS Dataset
Variables:

Total downward heat flux at surface
Salt Flux

Sea Surface Height Relative to Geoid
Geometric Depth Below Sea Surface
Momentum flux, u component
Momentum flux, v component
Salinity

u-component of current
v-component of current

Geometric vertical velocity (dz/dt)

Potential temperature

latitude [degrees north]

Years: 1980 to present

xarray.Dataset

Dimensions: (lat: 418, level: 40, lon: 360, time: 12)

v Coordinates:

5.015.025.0 ... 3972.0 4478.0

0.51.52.5 ... 357.5358.5 359.5
-74.5 -
6.574e+04 6.577e+04 ... 6.608e+04

74.16667 ... 64.16566 64.499

() ) ) [u)
(0 @ (@ (v

() ) )
(® (0 (@

lon = 170.5, lat = -71.16669, level = 5.0

2735 1
273.0 +
2725 -
272.0 4
271.5 -
271.0 +

2705

level (level) float32
lon (lon) float32
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Marine Heatwaves

Definition: a period of at least five
consecutive days for which sea water
temperature is warmer than the 90th
percentile based on a 30-year historical
baseline period (Hobday et al., 2016).

Impacts: ecological (Holbrook et al.
2020) and socioeconomic (Hobday et
al., 2018)

loss of foundation habitats

(also in 1998 and 2002)
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Summary of prominent recent marine heatwaves that are documented and
analyzed in the literature (Frélicher & Laufkotter, 2018)
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Marine Heatwaves

Drivers:

Time scale
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Long-term
climate change
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climate modes

Ocean/atmosphere
Rossby waves
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Spatial scale

Space and time scales of
characteristic MHW
drivers (Holbrook et al.,
2019)
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2. Graph-based spherical CNNs for atmospheric river and
tropical cyclone segmentation (Jiang et al., 2019) and

Deep Learning Applications
for Spatiotempora| Anomaly spherical data (Defferrard et al., 2020)
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Deep Learning Applications
for Spatiotemporal Anomaly
Detection / Forecasting

3. CNNs combined with autoencoders (CNN-AEs) for
tropical cyclone, extra tropical cyclone, tropical depression
and atmospheric river detection (Racah et al., 2016)
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4. Capsule neural networks (CapsNets) for multi-day heat

or cold
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Deep Learning App'ications 6. Transfer learning (zero-shot learning) for offline
. anomaly detection (Buckchash & Raman, 2021)
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Research Questions

 How to select an appropriate number of predictors for spatiotemporal forecasting,
what domain knowledge is required, and whether we can make the learning semi-
supervised or unsupervised.

 How to overcome geophysical data insufficiency, and whether we can use the
generative models to create additional data.

 Whether transfer learning, including one-shot learning and zero-shot learning, can
be used, and how to select appropriate relevant datasets and/or pre-trained
models.

 How to tackle temporal correlations, and whether the video processing techniques
can be used for spatiotemporal data.

 Whether we can use the reviewed deep learning methods that tackle spatial and/or

temporal information, such as spherical convolutions, capsules, and graph

reasoning, to improve the marine heatwave predictability.
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