Reducing greenhouse gas emissions by optimizing room temperature set-points

Yuan Cai¹, Jasmina Burek¹, Jeremy Gregory¹, Julia Wang¹, Les Norford¹, Subhro Das², Kevin Kircher¹

¹MIT; ²MIT-IBM Watson AI Lab

Background: Greenhouse gas emission and the building sector

Global CO2 Emission by Sector

Electricity Consumption by End Use

Sources:

Research goal

Optimize room temperature setpoints for campus buildings to minimize total greenhouse gas emission.

Workflow

Machine learning model

Model Features (hourly):

- 1. Ambient dry-bulb temperature
- 2. Room temperature setpoint
- 3. Time-difference of the temperature setpoint
- 4. Functions of the time of day

Model Target (hourly):

Heating/cooling load

- 1. Linear Autoregressive Exogenous Model
- 2. Prophet model (Facebook)
- 3. Multilayer Perceptron

Load forecasting results

RMSE Comparison in the test data, in units of MJ

ARX	Prophet	MLP
4.25	4.04	1.77

1. Linear model; convex optimization

- Pros
 - Global optimality guaranteed
 - Standard solver (CVX) readily available
- Cons
 - Linear model forecast is not as accurate as non-linear ones

2. Non-linear model; non-convex optimization

- Pros
 - Non-linear model forecast is more accurate
- Cons
 - Global optimality not guaranteed
 - Requires custom solver

Idea: warm start NO.2 with solutions from NO. 1

Thank you!

Yuan Cai | SM Building Technology, MIT yuancai@mit.edu