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NIST Disclaimer:

Certain commercial equipment, instruments, or materials are identified in this presentation in order to 
specify the experimental procedure adequately.  Such identification is not intended to imply 
recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment 
identified are necessarily the best available for the purpose.

The opinions, recommendations, findings, and conclusions stated here do not necessarily reflect the 
views or policies of NIST or the United States Government.
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Motivation

Carbon dioxide (CO2) in the atmosphere 
has contributed to ≈ 1°C global 
temperature. Many countries have 
pledged to reach net-zero emissions of 
greenhouse gases (e.g., CO2) by 2050.

Climate Change – CO2

DAC has substantial potential to mitigate 
climate change. DAC is in an early 
development stage [1], and novel 
specialized sorbent materials are needed 
for DAC viability and success [2].

Direct Air Capture (DAC) of CO2

The space of potential sorbent materials 
is vast, growing exponentially with each 
new element considered for material 
chemistry. Therefore, historical trial-and-
error methods for material discovery are 
infeasible.

Material Discovery

AI offers a solution to the challenge of 
discovering next-generation materials. 
Active learning can help optimize 
experimental design (lab or simulation) 
by identifying the most information-rich 
experiment to perform next.

Artificial Intelligence (AI)



Machine Learning & Materials Discovery

• Machine Learning (ML) is now regularly used to learn from 
past experimental and computational data to predict 
potential novel, advanced materials for different 
technologies. For example:
• Discovery of new best-in-class phase change memory material [3]

• ML used to identify > 30 new candidate superconductors [4]

• ML guided discovery of a new thermoelectric material [5]

• Active Learning has been shown to guide predictions toward 
the most promising materials, accelerating materials 
discovery and optimization by orders of magnitude. [3,6-8]

• There are large open access databases of experimental and 
computed material properties.  
• e.g., in-house: NIST/ARPA-E Database of Novel and 

Emerging Adsorbent Materials (https://adsorption.nist.gov)

• Our interest: unleash these methods on the open datasets 
with the goal of identifying potentially better materials for 
carbon capture, removal,  etc. The outputs will be used to 
guide experimentalists in the lab = COLLABORATIONS!

Closed-loop autonomous materials exploration and 
optimization (CAMEO). (Fig 1 from Kusne et al. 2020 [3])

https://adsorption.nist.gov/
https://www.nature.com/articles/s41467-020-19597-w


MOFs = metal-organic frameworks 
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Schematic representation of the self-assembly of a MOF

MOFs are the material-class of focus for 
this proposal. 

They are hybrid materials that are built 
by assembling metal centers with 
organic linkers. [9]

Promising properties:
• large internal surface areas
• tunable, but uniform, channels and 

cavities
• high-capacity gas storage



MOFs Databases

The key to the success of machine learning model training is the need for well-curated 
datasets of both experimental and simulation data. 

Experimental and computational databases exist for sorbent materials such as MOFs, but still 
lack important materials properties, like molecule adsorption energies.

Crystal structure databases are available for experimental MOFs
• Inorganic Crystal Structure Database (ICSD) https://icsd.products.fiz-karlsruhe.de/
• Cambridge Structural Database MOF Subset (CSD) [10]
• Crystallography Open Database (COD) [11] 

Density functional theory (DFT)-based computational databases are also available
• Computation-Ready, Experimental MOF (CoRE-MOF) [12]
• Quantum MOF (QMOF) [13] 

Good resources to do machine learning training on perfect bulk MOFs!

https://icsd.products.fiz-karlsruhe.de/


Proposal Plan 

Expand the NIST adsorbent databases (https://adsorption.nist.gov)- link 
property measurements to resolved material structures (see next slide; slide 8)

Step 1

Combine relevant experimental and simulation databases currently available 
on MOFs into a new open-access NIST reference database. (slide 9)

…2

Build a machine learning model to learn from this database and predict the 
[important sorbent properties] for new materials.

…3

Pair the predictions with active learning to determine the most knowledge-rich 
simulations to perform next.

…4

Add generated data to the open-access database (see slide 9)…5

Collaborate with experimentalists to evaluate feasibility of conducting 
autonomous experiments for the discovery of new DAC sorbent materials

…6

https://adsorption.nist.gov/


Step 1: Training 
MOF atomistic 
properties

Current progress:

Use workflow to make a line graph out of an atomistic structure.

Line graphs for MOFs will then be used as ingredients to deep learning models.

RBF = radial basis function
https://arxiv.org/abs/2106.01829

https://arxiv.org/abs/2106.01829


Step 2: Open-access 
NIST database 

Database development of MOFs 
properties combining experimental 
data and DFT-based simulations of 
pertinent properties (e.g., 
molecule adsorption energies). 

JARVIS is a repository designed to 
automate materials discovery and 
optimization using classical force-
field, density functional theory, 
machine learning calculations and 
experiments. [14]

JARVIS (Joint Automated Repository for Various Integrated Simulations)

Find more details about JARVIS in: 
https://www.nature.com/articles/s41524-020-00440-1
Questions? Contact Kamal Choudhary (kamal.choudhary@nist.gov) 

https://www.nature.com/articles/s41524-020-00440-1
https://www.nist.gov/people/kamal-choudhary
mailto:kamal.choudhary@nist.gov


End-goal: Discovery of Advanced MOFs…

Discovery of 
Advanced 

MOFs

Autonomous
System

…using Autonomous 
Experimentation

Closed-loop autonomous materials exploration and 
optimization (CAMEO). (Fig 1 from Kusne et al. 2020 [3])

https://www.nature.com/articles/s41467-020-19597-w
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