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Species Distribution Models (SDMs)
• Tools that predict the pattern of species activity
– Integral in designing solutions to support 

threatened species
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Data for SDMs
• Extent and accuracy of SDMs depend on the 

range and quality of the biodiversity dataset

• Community Science provides the data 
necessary to construct accurate, 
comprehensive SDMs !
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• Voluntary crowdsourced data collection
• Low barriers to contribute 
• Growing in size, quality, and importance
• New & existing challenges
– Imperfect detection

Community Science (also known as citizen science)
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Imperfect Detection
• Probability of detecting a species given that it is 

present is less than 1

• Ignoring imperfect detection can lead to biased 
estimates of occupancy (Guillera-Arroita et al., 
2014)

• Occupancy Models!
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Occupancy Models
• Rely on a few key assumptions to account for 

imperfect detection:
1. No false positives
2. N observations are organized into a set of <N sites
3. At each site, we assume closure: the occupancy 

status remains unchanging across all observations
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Occupancy Model – Intuition 
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Occupancy Model – Intuition 

Observations: [0, 0, 1]
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Occupancy Model – Intuition 

Observations: [0, 0, 1]

Detection probability = 1/3
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Occupancy Model MLE for a single site

𝜓: 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑝!: 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑁: 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠
𝑇: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝑠
𝑛!: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑎𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑛. : 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑎 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑎𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

MacKenzie et al., 2002
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Occupancy Models
• Rely on a few key assumptions to account for 

imperfect detection:
1. No false positives
2. N observations are organized into a set of <N sites
3. At each site, we assume closure: the occupancy 

status remains unchanging across all observations
Scientists design sites prior to sampling to ensure 
closure, but this is not the case with community science!
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Unstructured, crowdsourced 
biodiversity datasets
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Unstructured, crowdsourced 
biodiversity datasets

OMs

Pathway to climate change 
mitigation
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Unstructured, crowdsourced 
biodiversity datasets

OMs

SDMs

Pathway to climate change 
mitigation
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Unstructured, crowdsourced 
biodiversity datasets

OMs

SDMs Natural Resource 
Management

Pathway to climate change 
mitigation
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Unstructured, crowdsourced 
biodiversity datasets

OMs

SDMs Natural Resource 
Management

Pathway to climate change 
mitigation



The image part with relationship ID rId2 
was not found in the file.

OMs
Unstructured, crowdsourced 

biodiversity datasets

SDMs Natural Resource 
Management

Group independent 
observations into sites 

while maintaining 
closure

Pathway to climate change 
mitigation
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Group independent 
observations into sites 

while maintaining 
closure
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{1. Discover the optimal number of sites 
automatically



The image part with relationship ID rId2 
was not found in the file.

Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{1. Discover the optimal number of sites 
automatically

2. Respect geospatial & temporal 
constraints imposed by species behavior
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{1. Discover the optimal number of sites 
automatically

2. Respect geospatial & temporal 
constraints imposed by species behavior

3. Consider similarity in geospatial & 
feature space
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{1. Discover the optimal number of sites 
automatically

2. Respect geospatial & temporal 
constraints imposed by species behavior

3. Consider similarity in geospatial & 
feature space

4. Run efficiently on large datasets
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{• Our proposal focuses on the eBird
dataset
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Group independent 
observations into sites 

while maintaining 
closure

Site Clustering Problem

{• Our proposal focuses on the eBird
dataset

• Observers submit checklists that list 
the birds they saw and the time and 
location of observation
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Existing Methods
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Existing Methods
1. eBird Best Practices

– Same observer, same latitude-
longitude coordinate, > 1 visit and at 
most 10 visits
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Existing Methods
1. eBird Best Practices

– Same observer, same latitude-
longitude coordinate, > 1 visit and at 
most 10 visits

2. Grid
– Most commonly, 1x1km

Retains less than 
25% of available 
data!
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Our Proposal
• Can we improve upon the existing methods by 

framing the Site Clustering Problem as a 
spatial clustering problem?
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Existing Spatial Clustering Algorithms 
• k-means (Llyod, 1982)
• CLARANS (Ng & Han, 2002)
• DBSCAN (Ester et al., 1996)
• DBRS (Wang & Hamilton, 2003)
• SKATER (Assunção et al., 2006)
• REDCAP (Guo, 2008)
• For a more complete review see Liu et al.

Partitioning

Density Based

Regionalization
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Algorithms in this proposal
• lat-long
• rounded-4
• Density-based spatially-constrained (DBSC) (Liu et al., 

2012)
• clustGeo (Chavent et al., 2018)
• Consensus Clustering
– Agglomerative & Balls Implementations (Gionis et al., 2007)
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Clustering 2Clustering 1

Clustering i

Consensus 
Clustering 
Result
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• 2,146 eBird checklists
• Collected between May and July 2017
• Remotely sensed environmental variables 

at each checklist

• Manually constructed a ground 
truth clustering 

• Simulated occupancy and 
detection probabilities for each 
checklist



The image part with relationship ID rId2 
was not found in the file.Experimental Setup

𝑜𝑐𝑐 𝑝𝑟𝑜𝑏 = .75 ∗ 𝑣𝑎𝑟! − 1.25 ∗ 𝑣𝑎𝑟" + .1 ∗ 𝑣𝑎𝑟#
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• Predictive Accuracy
–Mean squared error (MSE) of occupancy probability 

• External Validation
– Similarity to ground truth clustering
• Adjusted Rand Index (ARI), Adjusted Mutual Information 

(AMI), Normalized Information Distance (NID) (Vinh et al. 
2010)
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* inputs for both CC algorithms were lat-long, density-based, rounded-4
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Thank You!
–rothmark@oregonstate.edu
–@rothm_osu on Twitter


