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species Distribution Models (SDMS)

« Tools that predict the pattern of species activity

— Integral in designing solutions to support
threatened species
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« Extent and accuracy of SDMs depend on the
range and quality of the biodiversity dataset

 Community Science provides the data
necessary to construct accurate,
comprehensive SDMs |
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Community SCI€NCE taiso known as citizen science)

« Voluntary crowdsourced data collection
« Low barriers to contribute
« Growing in size, quality, and importance

 New & existing challenges
— Imperfect detection
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« Probability of detecting a species given that it is
present is less than 1

« Ignoring imperfect detection can lead to biased
estimates of occupancy (Guillera-Arroita et al.,
2014)

* Occupancy Models!
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Occupancy Models

« Rely on a few key assumptions to account for
imperfect detection:

1. No false positives
2. N observations are organized into a set of <N sites

3. At each site, we assume closure: the occupancy
status remains unchanging across all observations
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Occupancy Model - Intuition
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Occupancy Model - Intuition

Observations: [0, O, 1]
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Occupancy Model - Intuition

Observations: [0, O, 1]

Detection probability = 1/3




Y: occupancy probability
p;: detection probability at time t

N: total number of sites

T:number of distinct sampling occasions

X

TPH 1—p) +(1—1)

ng: number of sites where the species was detected at time t
n.:number of sites at which a species was detected

MacKenzie et al.,,

2002
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L(¢,p) = w Hp (1—pe)™™
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Occupancy Models

« Rely on a few key assumptions to account for
imperfect detection:

1. No false positives
2. N observations are organized into a set of <N sites

—@ At each site, we assume closure: the occupancy
status remains unchanging across all observations

Scientists design sites prior to sampling to ensure
closure, but this is not the case with community science!
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Unstructured, crowdsourced
biodiversity datasets
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1. Discover the optimal number of sites
automatically
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~ 1. Discover the optimal number of sites
automatically

2. Respect geospatial & temporal
constraints imposed by species behavior
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= 1. Discover the optimal number of sites
automatically

2. Respect geospatial & temporal
constraints imposed by species behavior

3. Consider similarity in geospatial &
feature space
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~ 1. Discover the optimal number of sites
automatically

2. Respect geospatial & temporal
constraints imposed by species behavior

3. Consider similarity in geospatial &
feature space

4. Run efficiently on large datasets
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« Our proposal focuses on the eBird
dataset
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« Our proposal focuses on the eBird
dataset

« Observers submit checklists that list
the birds they saw and the time and
location of observation
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— Same observer, same latitude-
longitude coordinate, > 1 visit and at

most 10 visits Q @

2
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1. eBird Best Practices

— Same observer, same latitude-

E'fk\\%
longitude coordinate, > 1 visit and at /7
most 10 visits P= D)€

data!

Retains less than @
. 25% of available AR
2. Grid

— Most commonly, 1x1km
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« Can we improve upon the existing methods by
framing the Site Clustering Problem as a
spatial clustering problem?
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« k-means (Llyod, 1982)

« CLARANS (Ng & Han, 2002)
« DBSCAN (Ester et al., 1996)
« DBRS (Wang & Hamilton, 2003) _|
« SKATER (Assuncao et al., 2006)
. REDCAP (Guo, 2008) Regionalization

 For a more complete review see Liu et al.

Partitioning

Density Based
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 |at-long
 rounded-4

« Density-based spatially-constrained (DBSC) (Liu et al.,
2012)

« CclustGeo (Chavent et al., 2018)

« Consensus Clustering
— Agglomerative & Balls Implementations (Gionis et al., 2007)
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Clustering 1 Clustering 2
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Consensus
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Result
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k « 2,146 eBird checklists

« Collected between May and July 2017
 Remotely sensed environmental variables

at each checklist

46°N -

« Manually constructed a ground
truth clustering

« Simulated occupancy and
detection probabilities for each
checklist
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occ prob = .75 xvar; — 1.25 * var, + .1 x vary
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* Predictive Accuracy

— Mean squared error (MSE) of occupancy probability

« External Validation

— Similarity to ground truth clustering

« Adjusted Rand Index (ARI), Adjusted Mutual Information
(AMI), Normalized Information Distance (NID) (Vinh et al.
2010)
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ARI AMI NID occ MSE
ground truth 1.0 1.0 0 .0389 £+ .015
eBird-BP - - - 1177 £ .041
1-kmSq 9948 9401 .0599 065 =027
lat-long 9992 9825 0175 0422 + .017
rounded-4 9992 9826 0174 0424 + .017
density-based 9806 9566 0434 1193 £ .031
clustGeo 9994 9909 .0091 0460 £+ .019
CC-agglom 9992 9835 0166 0421 = .017
CC-balls 9992 9834 0165 0422 + .017

* inputs for both CC algorithms were lat-long, density-based, rounded-4



Assuncado, R. M., Neves, M. C., Camara, G., and Freitas,
C. D. C. Efficient regionalization techniques for socioeconomic
geographical units using minimum spanning
trees. International Journal of Geographical Information
Science, 20(7):797-811, 2006.

Chavent, M., Kuentz-Simonet, V., Labenne, A., and Saracco,
J. Clustgeo: an r package for hierarchical clustering
with spatial constraints. Computational Statistics, 33(4):
1799-1822, Jan 2018.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A densitybased
algorithm for discovering clusters in large spatial
databases with noise. pp. 226-231, 1996.

Gionis, A., Mannila, H., and Tsaparas, P. Clustering aggregation.
ACM Trans. Knowl. Discov. Data, 1(1):4-es,
March 2007. ISSN 1556-4681.

Guillera-Arroita, G., Lahoz-Monfort, J., MacKenzie, D. 1.,
Wintle, B. A., and McCarthy, M. A. Ignoring imperfect
detection in biological surveys is dangerous: a response
to ‘fitting and interpreting occupancy models’. PloS one,
9(7):e99571-e99571, 07 2014.

Oregon State University

College of Engineering

Guo, D. Regionalization with dynamically constrained agglomerative
clustering and partitioning (redcap). International
Journal of Geographical Information Science, 22
(7):801-823, 2008.

Liu, Q., Deng, M., Shi, Y., and Wang, J. A density-based
spatial clustering algorithm considering both spatial proximity

and attribute similarity. Computers Geosciences,
46:296-309, 2012.

Lloyd, Stuart P. "Least squares quantization in PCM." Information
Theory, IEEE Transactions on 28.2 (1982): 129-137.

Ng, R. and Han, J. Clarans: a method for clustering objects
for spatial data mining. IEEE Transactions on Knowledge
and Data Engineering, 14(5):1003-1016, 2002.

Vinh, N. X., Epps, J., and Bailey, ]J. Information theoretic
measures for clusterings comparison: Variants, properties,
normalization and correction for chance. J. Mach. Learn.
Res., 11:2837-2854, December 2010. ISSN 1532-4435.



phv: .
Oregon State University

/
V‘j@ College of Engineering

Thank You!

—rothmark@oregonstate.edu
—@rothm_osu on Twitter



