ICML 2021 Workshop Tackling Climate Change with Machine Learning

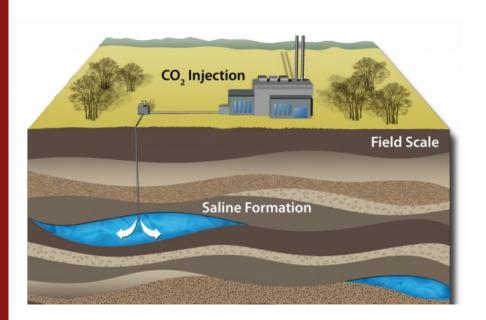
Enhancing Laboratory-scale Flow Imaging of Fractured Geological Media with Deep Learning Super Resolution

Manju Pharkavi Murugesu¹, Timothy I Anderson², Niccolò Dal Santo³, Vignesh Krishnan⁴, Anthony R Kovscek¹

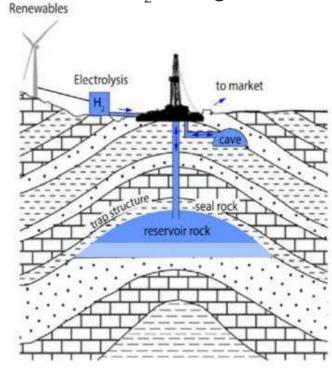
Department of Energy Resources Engineering, Stanford University, California, USA¹ Department of Electrical Engineering, Stanford University, California, USA² The MathWorks Ltd, Cambridge, UK³ The MathWorks Ltd, Natick, Massachusetts, USA⁴

Subsurface storage and utilization helps combat climate change

1. CO₂ Storage



2. H₂ Storage

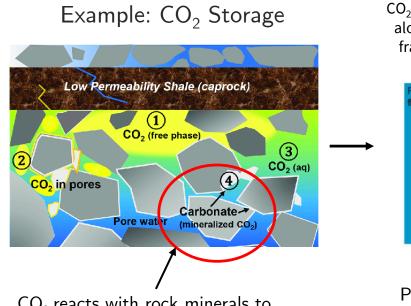


Retrieved from Center for Climate and Energy Solutions

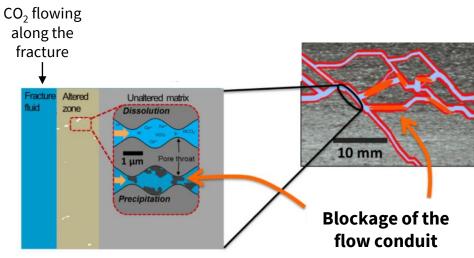
Illustration by Alan Bischoff

Stanford University

We need to understand the reactions and alterations that occur at the subsurface during CO_2 or H_2 injection



CO₂ reacts with rock minerals to cause dissolution or precipitation



Precipitation or dissolution of rock minerals in fractured geological media alters fracture properties and affects how well CO_2/H_2 flows and gets stored.

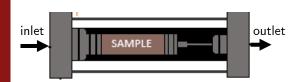
Retrieved from Jun et al. (2017)

Laboratory experiments help visualize the fluid transport and reaction processes

Simulate reactive fluid injection into fractured shale

Simultaneously image using computed tomography

Enhance resolution of acquired images



Deep learning 400-Low resolution CT High resolution

 Set up to inject fluid into the fractured geological media from inlet to outlet The fluid flow and reactions at the fracture interface of the geological media are imaged by computed tomography at various time intervals We use deep learning to enhance the resolution of computed tomography images

Stanford University

Workflow from image acquisition to real-time application

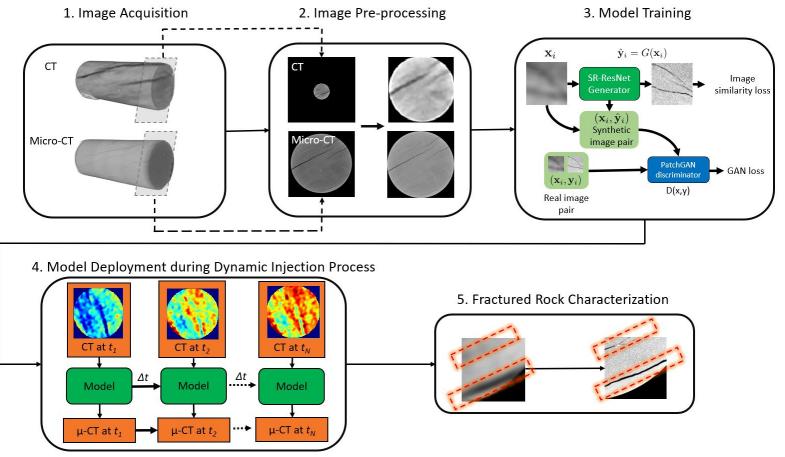
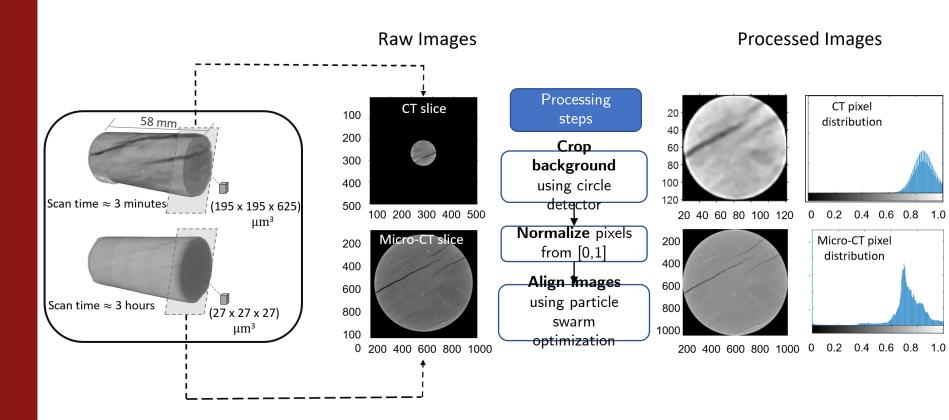
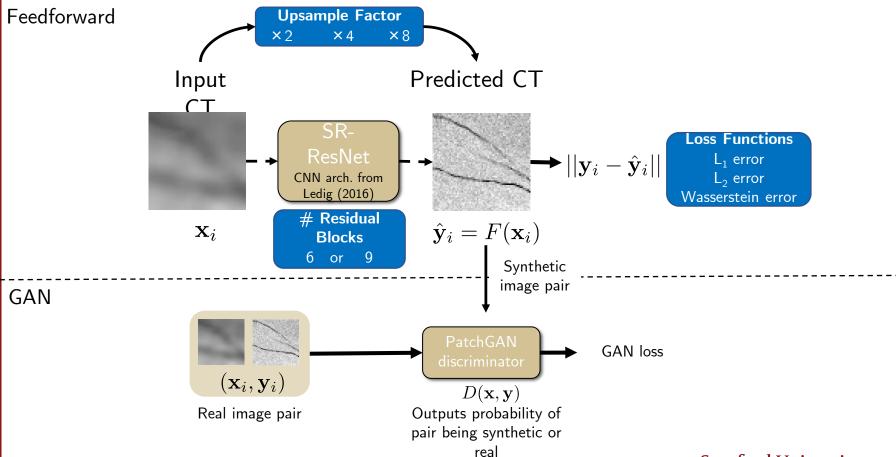


Image Acquisition to Processing Pipeline



Deep Learning Model Architectures

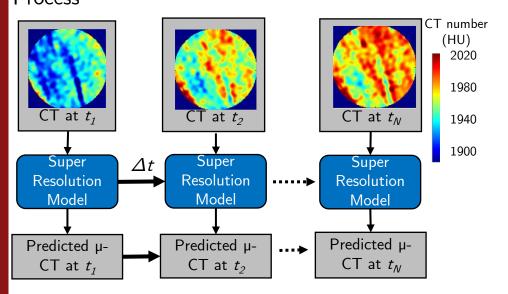


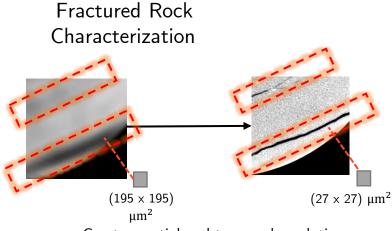
Results

Model	Low resolution	Ground truth	Predicted image	Quantitative Metrics	
Conditional GAN Wasserstein loss	64 x 64			PSNR: 15.957 ± 0.190 SSIM: 0.148 ± 0.010	
Conditional GAN vanilla loss	64 x 64	256 x 256 256 x 256	256 x 256 256 x 256	PSNR: 18.657 ± 0.369 SSIM: 0.210 ± 0.007	
Feedforward CNN L1 loss	64 x 64	256 x 256	256 x 256	PSNR: 19.587 ± 0.266 SSIM: 0.228± 0.009	sity

Ongoing Work

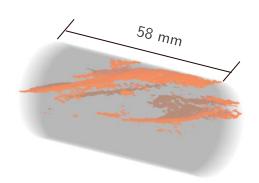
Model Deployment during Dynamic Injection Process





- Greater spatial and temporal resolution
- Greater Signal to Noise Ratio
- Accurate fracture characterization
- Accurate porosity inversion

Path to Climate Action



Objective: To use machine learning to enhance visualization of fractured rock during dynamic injection processes

Accurate fracture segmentation

• 3D porosity characterization

Characterization and monitoring of underground injection and storage

H₂ storage

CO₂ utilization & sequestration

Enhanced geothermal system

Acknowledgement

- Dr. Anthony Kovscek
- Code is based on framework from Isola (2016), Zhu (2017)
- MathWorks
- SUPRI-A team and industrial affiliates
- Manju Pharkavi Murugesu is supported by Knight-Hennessy fellowship & Timothy I Anderson is supported by Siebel Scholars Foundation
- This work was supported as part of the Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under DOE (BES) Award DE-SC0019165

References

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, & Alexei A. Efros. (2016). Image-to-Image Translation with Conditional Adversarial Networks.

Justin Johnson, Alexandre Alahi, & Li Fei-Fei. (2016). Perceptual Losses for Real-Time Style Transfer and Super-Resolution.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, & Wenzhe Shi. (2016). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

Jun-Yan Zhu, Taesung Park, Phillip Isola, & Alexei A. Efros. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

Jun, Young-Shin, Lijie Zhang, Yujia Min, and Qingyun Li. (2017) Nanoscale chemical processes affecting storage capacities and seals during geologic CO2 sequestration.