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Subsurface storage and utilization helps combat climate change 

Retrieved from Center for Climate and Energy Solutions

1. CO2 Storage
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2. H2 Storage

Illustration by Alan Bischoff
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Illustration by SLAC National Accelerator Laboratory

We need to understand the reactions and alterations that occur 
at the subsurface during CO2 or H2 injection 

Retrieved from Jun et al. (2017)

Example: CO2 Storage

CO2 reacts with rock minerals to 
cause dissolution or precipitation

Precipitation or dissolution of rock minerals in fractured
geological media alters fracture properties and affects
how well CO2/H2 flows and gets stored.

Blockage of the 
flow conduit

CO2 flowing 
along the 
fracture



4

Simulate reactive fluid 
injection into fractured shale

Simultaneously image using 
computed tomography

Enhance resolution of 
acquired images

inlet outlet

Low 
resolution CT 

High 
resolution  

Deep 
learning

Laboratory experiments help visualize the fluid transport and 
reaction processes

• Set up to inject fluid into
the fractured geological
media from inlet to outlet

• The fluid flow and reactions at the
fracture interface of the geological
media are imaged by computed
tomography at various time
intervals

• We use deep learning to
enhance the resolution of
computed tomography images
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Workflow from image acquisition to real-time application
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Processing 
steps

Crop 
background 
using circle 
detector

Normalize pixels 
from [0,1]

Align images 
using particle 

swarm 
optimization

Image Acquisition to Processing Pipeline



SR-
ResNet

CNN arch. from 
Ledig (2016)

Input 
CT

Predicted CT 

Ledig et al. (2016) & Isola et al. (2017)
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Deep Learning Model Architectures

Loss Functions
L1 error
L2 error

Wasserstein error

Upsample Factor

×2       ×4      ×8

# Residual 
Blocks

6   or    9

PatchGAN 
discriminator

Outputs probability of 
pair being synthetic or 

real

Real image pair

GAN loss

Synthetic 
image pair

GAN

Feedforward
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Results
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Ongoing Work

Model Deployment during Dynamic Injection 
Process 

CT at t1 CT at t2 CT at tN

Predicted µ-
CT at t1

Predicted µ-
CT at t2

Predicted µ-
CT at tN

Super 
Resolution

Model

∆t

2020

1980

1940

1900

CT number 
(HU)

Super 
Resolution

Model

Super 
Resolution

Model

Fractured Rock 
Characterization

• Greater spatial and temporal resolution
• Greater Signal to Noise Ratio
• Accurate fracture characterization
• Accurate porosity inversion

(27 x 27) μm2(195 x 195) 

μm2
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Path to Climate Action

CO2 utilization & 
sequestration

Enhanced 
geothermal 

system

• Accurate fracture
segmentation

• 3D porosity 
characterization  

Objective: To use machine
learning to enhance
visualization of fractured rock
during dynamic injection
processes

H2 storage

Characterization and 
monitoring of underground 

injection and storage
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