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Introduction
§ Fuel switching, CO2 and H2 storage critical for long-term sustainable 

energy systems (Zoback & Kohli 2019, EIA, Hassanpouryouzband et al. 2021)

§ Image-based characterization, digital rock physics critical for study of 
candidate reservoirs (Ketcham & Carlson 2001, Vega et al. 2013, Blunt 2017)

§ Central problems: 
› Acquisition expensive, time-consuming, and/or sample destructive
› Nanoscale shale images acquired in 2D but need 3D for 

characterization
› Data too scarce to estimate petrophysical properties

§ Address by applying deep generative models
› Central theme: 3D volumes when only 2D training data available



Characterization Workflow



3D Image Translation
§ Multimodal, multiscale imaging emerging characterization approach: 

acquire images in 2+ modalities to have best of both (Aljamaan et al. 2017)

§ Challenges in acquisition, dataset curation, model development
§ In this work, acquire:

› Transmission X-ray microscopy (TXM): sample-preserving, low contrast
› Focused ion beam-scanning electron microscopy (FIB-SEM): high 

contrast/resolution, sample-destroying
§ Task: predict FIB-SEM from TXM

› FIB-SEM images are planar, TXM volumetric: predict 3D volumes 
from 2D training data



3D Image Translation Models
Use modified style transfer, super-resolution models (Isola et al. 

2017, Zhu et al. 2017, Ledig et al. 2016)

Shale image volumes 
have sparse z-

gradients

Enforce continuity by 
including Jacobian 
penalty in training

(Hoffman et al. 2019)

pix2pix model



3D Image Translation Results
§ Training: 2D image patches w/ regularization
§ Evaluation: x-y image slices through 2D-to-2D network

Input TXM Volume Predicted FIB-SEM 
(baseline model)

Predicted FIB-SEM 
(with regularization)



Simulation in Translated Volumes
§ Simulate flow through lower-density regions
§ Permeability: accurate for core scale, too large for matrix-scale

Pressure Field Streamlines

SRGAN Model k (d) φ φconnected 

Original 2.37 × 10−5 20.7% 18.7% 

Regularized 3.01 × 10−5 18.9% 17.4% 

Segmented low-
density regions 

(kerogen+minerals)



Porous Media Image Synthesis
§ Nanoscale imaging data often suffers from data scarcity

› Unable to estimate properties from limited data
§ Main idea: train generative model to synthesize images of sample

› Computed rock properties from synthetic images (Adler et al. 1990)

§ Methods for porous media image synthesis divided between:
› Statistical methods (Roberts et al. 1997, Manwart et al. 2000)

› Deep-learning based methods (Mosser et al. 2017)

§ Current methods limitations for application to shales:
› 3D generation from 2D images: limited to binary images (Okabe & Blunt 2004)

› 3D grayscale generation: requires 3D training data (Mosser et al. 2017)

› Multimodal/multiscale image generation unexplored



Image Synthesis Approach

1283 voxel sandstone
6.12 µm/voxel

12 interpolated images

Interpolation in z-dimension latent space -> 3D volumes

Model output: 
synthetic 2D images

Glow 
model 

Anchor 
slice

Anchor 
sliceGeneration time (100 x 1283 volumes): < 10 min

Linear interpolation 
in latent space

Connection in 
image space

Glow model
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§ Generative flow model 
(Glow) from Kingma et al. 
2018

§ 3D grayscale generation 
from 2D training data

§ 3D volume generation 
equivalent to evaluating 
batch of 2D images, can 
be done in parallel



Image Generation Results
§ Bentheimer sandstone µ-CT image (6.12 µm/voxel)
§ x-y images closely resemble training images
§ Post-processing improves appearance, reduces artifacts

x-y plane x-z plane x-z plane 
(w/ r=2 spherical median filter)



Morphological Features of Generated Images
§ Image volume is filtered (3D median filter) and binarized (Otsu) first
§ Computed in ImageJ: MorphoLibJ (Legland 2007), Analyze Regions 3D
§ Normalized with volume of sample to obtain densities

Original: 100 volumes (subsampled from micro-CT), 1283 voxel
Synthetic: 100 unique volumes; 1283 voxel, interpolation step size = 12



Petrophysical Properties of Synthetic Volumes
§ Single-phase permeability: Navier-Stokes (NS) equations for steady state, 

incompressible flow (simpleCycFoam), 15-20 volumes synthetic and original 
§ Differences in mean breadth (curvature) and Euler characteristic parameters 

may explain distribution differences



Multimodal Image Generation
Generate multimodal data by treating modalities as image channels

Synthetic TXM volume Synthetic FIB-SEM volume

1283 voxel volume,
62.73 nm/voxel,
Post-processed with 
1x1x3 median filter



Conclusions and Future Steps
§ Deep generative models enable new reservoir rock characterization methods

› Overcome limitations of imaging machines to create volumes
› Address data scarcity by generating realistic new data samples
› Improved nanoscale characterization à direct production implications for shales

§ Data translation: regularization during training creates volumes suitable for 
flow simulation

§ Data synthesis: accurate recreation of 3D volumes, capable of 
multimodal/grayscale generation from 2D data

§ Next steps:
› Integrate unpaired imaging data into data translation models
› Quantify uncertainty in properties with synthetic data (Guan et al. 2020)

› Impose nanoporosity to create multiscale volume (Frouté et al. 2020)
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