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Our climate 1s changing

lion 1n damages
Over the past 15 years (2005-2019), weather and climate disasters

have cost a combined $1.16 trillion in damages in the U.S. alone
(NOAA).
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Greenhouse gases in the atmosphere lead to additional radiative forcing.
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Lifetime of CH, (~ 9 years) is shorter than CO,
(~500 years) by two orders of magnitude.

Reduction of CH, emissions can

* lead to short- and medium-term mitigation.

* help achieve Paris agreement of 1.5-2.0 °C by
2050.
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60% of total emission is anthropogenic
where we can make most progress on mitigating

But local sources are uncertain/not known everywhere



* Airborne remote-sensing instruments
such as AVIRIS-NG allow local point
sources to be detected across large
geographical areas.

* Each plume image represents the total
CH4 column enhancement; in each
pixel, the enhancement is obtained as a
retrieval product using absorption
spectroscopy.

* Anthropogenic emissions are often point

Sources.

Quantification of emission rates
is challenging

Examples of methane plumes from different sectors such as (a) a landfill, (b) diary manure area, (c) an oil
and gas facility, and (d) a natural gas storage field in California, observed by the next-generation Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS-NG). (California Methane Source Finder)



Gaussian plume modelling
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What we want is to predict emission rate directly from a 2D image:

Cross-sectional flux
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These methods need local wind knowledge.

High uncertainties from wind speeds!

Residence time of methane mass (IME)

Duren et al. 2019
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LES video
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We use this to learn how plume images change with wind speeds and flux rates.
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LES can simulate a variety of plumes

We apply deep learning to predict emission rates from plume images (a regression task).



Synthetic plume 1images with realistic noise
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X (300%300 pixels image)

Y (scalar value)

——— Emission rate: 200 kg h-!
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| Input of size 300*300*1 |
v
Conv Layer:
6 filters of size (2,2) & ReLu
v
Conv Layer:
12 filters of size (3,3) & ReLu
v
| Max Pooling of size (2,2) |
v
Conv Layer:
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Max Pooling of size (2,2)

[rcreing o]

Fully Connected Layer:

* The trained model can be applied to predict unseen S nerons & el

plumes and evaluate how well it performs. Fully Connected Layer:

32 neurons & ReLu
v

Output a scalar prediction
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LES plume images
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Noise scenes

Each LES plume is then augmented Each noise scene is then augmented

LES plume and noise scene is combined with each bucket

-

Training Validation Test
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MethaNet performance on test set
Overall:

Mean absolute percentage error of 22%.

Plumes with emission rates > 40 kg h-!:
Mean absolute percentage error of 17%.

* This level of performance at a mean absolute percentage
error of 17% is a state-of-the-art achievement for a model
that does not even rely on wind speed information.

Predictions on controlled release experiments in Victorville, CA
Controlled emission rates of 39 + 5 kg h-!

(A) Predicted flux of 33 kg/hr (B) Predicted flux of 26 kg/hr (C) Predicted flux of 32 kg/hr
PP 500
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6/15/17, 19:18:01 UTC 6/15/17, 19:11:43 UTC 6/17/17, 20:04:10 UTC 0
Surface sonic wind 1.8 m/s Surface sonic wind 0.9 m/s Surface sonic wind 0.8 m/s
Predicted 33, 26, and 32 kg/hr. The mean and std are 31 and 3,
respectively. This is consistent with the actual rate within one std.
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MethaNet

Emission rate

We trained a CNN model, called MethaNet, to predict methane point-source emissions directly from high resolution 2-D
plume images.

Our model achieved a mean absolute percentage error for predicting unseen plumes under 17%, a significant improvement
from previous methods that require local wind information.

Application of MethaNet to a controlled release experiment provides a basis of this technique to be used in future airborne

campaigns and satellite observations to quantify methane sources. ”
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