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Motivation

Labeled 
Ground Truth 
Satellite Data

Machine 
Learning 
Models

Crop 
Monitoring

Reduce Food 
Insecurity

Difficult to obtain and scarce 
in many areas of the world. 

Street2sat provides a solution to create large datasets of geo-referenced labels to be 
used in machine learning and other applications.   



Approach
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Data Collection

• Images from initial study collected in Western Kenya
• GoPro Max 360 cameras pointing orthogonal to the side of the car 

closest to the crops
• Routes mapped to ensure maximal coverage of crops



Preprocessing 

• Images were straightened using Otsu’s method to create training and 
validation sets 

• Straightening was needed so that the predicted bounding boxes would 
have accurate height representation



Object Detection

• A custom Yolov5 model was 
trained using hand labeled data

• Initialized using pretrained 
weights from COCO

• Fine-tuned using hand labeled 
data 



Depth Estimation

• l_focal: focal length of camera
• h_crop: height of crop based on lookup table 
• h_image: image height in pixels
• h_bbox: detected bounding box height in pixels
• h_sensor: sensor height obtained from GoPro website
• d: distance to crop

In a given image, all predicted distances were averaged to get one 
distance per crop per image. 



Relocation

• Once distance (d) is known, create a 
velocity vector based on the closest 
other image in time

• Since cameras are placed orthogonal to 
the drive direction, translate the image 
coordinates d meters 90 degrees west of 
the velocity vector

d

v



Experiment Setup
• Labeled 296 training images and 53 test images with expert guidance
• 755 instances of maize and 1795 instances of sugarcane in training set 
• 253 maize and 229 sugarcane in test set 
• Precision: 0.41, Recall: 0.59, mAP @ 0.5: 0.45, and mAP@.5-.95: 0.13
• Often more bounding boxes were predicted than labeled, which affected precision 

but is good for accurate crop distance.

Labels Predictions



Quality Assessment/Quality Checks

• We did not have ground truth labels for the test set so we compared 
our predicted points with a 10 m/pixel crop/no crop map of Kenya

• 73/85 (86%) predicted crop points were also classified as crop on the 
map. 

• In the future we hope to test on thousands of points in several locations 
• Additional quality checks will be implemented in future work
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