Preserving the integrity of the Canadian northern ecosystems through reinforcement learning-based Arctic fox movement models

Catherine Villeneuve^{1,6,7}, Frédéric Dulude-de Broin^{1,3,6}, Pierre Legagneux^{1,3,4,5}, Dominique Berteaux^{2,3,5}, Audrey Durand^{1,6,7}

¹Université Laval, ²Université du Québec à Rimouski (UQAR), ³Centre d'Études Nordiques (CEN), ⁴CNRS — Centre d'études biologiques de Chizé (CEBC), ⁵Centre de la science de la biodiversité du Québec (CSBQ), ⁶IID, ⁷Mila

The Arctic fox: An important ecological indicator

- The Arctic fox (Vulpes lagopus) is one of the main predators of the circumpolar world
- Predators are the dominant force controlling the Canadian Arctic food webs
- Realistic modeling of the movement of the Arctic fox is a crucial first step towards the
 understanding of how variations in predations risk impacts the local ecosystems in a
 context of climate change

A fundamentally limited baseline

The most common way to model the movement of an animal in ecology is through **Step Selection Function** (SSF):

The SSF is a fundamentally limited approach, because it

- Ignores the sequential nature of the data
- Is unable to faithfully recreate complex movement behaviors

Reinforcement learning (RL) methods could be well suited to address these shortcomings.

Filling the gaps in movement modelling with RL

- Our goal is to address the SSF shortcomings with reinforcement learning
- We will use GPS tracking data of foxes as well as habitat and prey abundance information from the monitoring program of Bylot Island, Nunavut
- New data will be collected every summer for the 2021-2024 period

Lemmings & snow geese are the main preys on Bylot Island

Aim 1: Demonstrating the potential of RL

- We first aim to reveal the potential of RL by building a movement model based on contextual bandits algorithms.
- This initial model will allow us to demonstrate that RL approaches can educate us at least as well as the SSF on the basic aspects of the fox's behavior.

Aim 2: Enable the emergence of complex movement behaviors

- The next step of our project will be to develop **realistic models** able to adequately capture the **sequential nature** of an Arctic fox's movement decisions
- We will leverage offline RL strategies and exploit neural networks to learn rich representations
- Complex movement behaviors are expected to emerge from these models

Aim 3: Reveal the impact of territorial dynamics

We aim to extend our models to **multi-agent settings** in order to have a better understanding of the impact of the **complex territorial dynamics between neighboring foxes** on their ecological community.

Towards mutual enrichment

- This novel application of RL to a real-world problem should raise interesting challenges for the RL research community
- This interdisciplinary project could contribute to bridging the gap between RL theory and practice, while also opening new research directions for supporting the development of rational conservations actions

Acknowledgements : This work was supported by the Sentinel North program from the Canada First Research Excellence Fund. We thank Mathieu Godbout for his insightful comments and everyone involved in the long-term monitoring program at Bylot. Wildlife and landscape pictures from Bylot in the presentation were taken by Andréanne Beardsell, Cynthia Resendiz, Frédéric Dulude-de Broin, Dominique Berteaux, NASA and the Centre d'études nordiques.

Thanks!

