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California’s clean energy programs are mainly B

benefiting the rich, study finds

Texas Blackouts Hit Minority
Neighborhoods Especially Hard

As the freak winter storm raged, historically marginalized
communities were among the first to face power outages, experts
say.
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A Just and Equitable
Transition
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Evaluating equity in 100% renewable energy or 100% clean energy laws

NEWYORK'S .
Cormbat Environmental Racism GLIMATE LEADERSHIP and
COMMUNITY PROTECTION ACT

Transition to a low-carbon energy system is an opportunity
for the placement of a more just and equitable system.

By Cathleen Kelly and Mikyla

California Energy Commission approves $384M plan to
accelerate zero-emission transportation; 50% of funds to
benefit disadvantaged communities

15 October 2020

Low-Income Home Energy Assistance Program




Using ML for an
equitable transition

Leverage scalable machine learning for measurement
of the equity of the current energy system and to

faci

litate a just transition to clean energy systems

Use cases of ML for energy equity

Classification and diagnosis of inefficiencies
Time-series predictive analysis

Wide-scale classification/optimization of clean energy
installments

Etc.
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To Cover:

e Leveraging Machine Learning for Equity
Analysis of Inefficient Buildings

e Leveraging Machine Learning for Equity Analysis
of Residential Solar Potential Estimation

e Expected Impact and Target Audience



Machine learning and
energy efficiency

Find Inefiicient Homes
Thershold sensitivty

List of Inefficient homes

Show Search:
x
entries

Year Property
D Built Area Type Faults Action

0001 1987 2048 Single Inefficient  View
sa.ft.  Family AC or
Building
Envelope

() Find Inefficient homes
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Overview
2 Beds, 1 Bath
Built in 1927
2500 sq. ft.
Multti-family

Monthly energy consumption
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Likely Faults
Building Envelope
Cooling Inefficient Issue: Inefficient Air-conditioning
WattHome © 2017

(b) Inefficiency Report

Fig. 5. Screenshot of our implementation of WattScale.

Watthome and
Wattscale

lyengar, Srinivasan, et al.
“WattScale: A Data-driven
Approach for Energy Efficiency
Analytics of Buildings at Scale.”
ACM Transactions on Data
Science (2021).
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e Leveraging Machine Learning for Equity Analysis of
Residential Solar Potential Estimation
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Leveraging Machine Learning for
Solar Equity Analysis
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Figure 11: (a) Spatial representation of the annual solar en-
ergy generation potential (b) Energy potential distribution.
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== e Manual Solar Potential Estimation of rooftops is slow and expensive

e Widely available GPS imagery in conjunction with ML allows for scalable and
Figure 7: Segmentation output on different roof types. highly accurate estimation of rooftop solar potential

Lee, Stephen, et al. “Deeproof: A data-driven approach for solar

potential estimation using rooftop imagery.” ACM SIGKDD, 2019. e Results can be used to optimize installation of solar panels in disadvantaged
communities
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Our Target Audience and
Expected Impact

Government
Policy Makers

Social and )
Environmental

Scientists
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Recap

e The current energy system is steeped in inequities.

e The transition to renewable energy should be used to make a more equitable
system

e By leveraging machine learning, we can perform wide-scale and cost-efficient

analysis to build a more equitable energy system
- We have highlighted two examples, but there are many more applications

e These analysis tools should be visualized and offered to policy-makers,
scientists, and the general public.
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COMPUTING FOR THE COMMON GOOD
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