An Iterative Approach to Finding Global Solutions of AC Optimal Power Flow Problems

Ling Zhang, Baosen Zhang

BE BOUNDLESS

Climate Change and Cleaner Energy Systems

Resource Allocation: AC Optimal Power Flow

Optimization problem

```
min Cost(P_1, ..., P_n)
```

- s.t. Supply-demand balance constraint $\iff \lambda$: Lagrange multiplier Units and system physical constraints
- Non-convex, hard problem (multiple local solutions)
- Challenges: Randomness in renewable energy resources, need to deal with lots of scenarios, get stuck at sub-optimal solutions
- Open Question: Escape from attraction of local solutions
 UNIVERSITY of WASHINGTON

- Transformed to unconstrained form
- The penalized form

min Cost
$$(P_1, ..., P_n) + \rho/2$$
 (constraint)²

 ρ : Penalty parameter

Equivalent to original problem with ho large enough

Bus 1 Generator

The Lagrangian

min Cost(P_1 , ..., P_n)+ λ (constraint)

λ: Lagrange multiplier related to the supply-demand balance constraint 'ASHINGTON

Use the penalized form to study the solutions to ACOPF

How to escape from local solutions without trying many initialization?

A nonlinear solver initialized at this local solution can get stuck.

UNIVERSITY of WASHINGTON

Use the penalized form to study solutions to ACOPF

A nonlinear solver initialized at this local solution can get stuck.

UNIVERSITY of WASHINGTON

Use the penalized form to study solutions to ACOPF

The minimizer of the Lagrangian is close to the global solution.

Can be a good warm start.

A nonlinear solver initialized at this local solution can get stuck.

UNIVERSITY of WASHINGTON

Our Algorithm

Escape from local solutions and find global solution iteratively

Use Learning to Speed Up

Thanks