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Resource Allocation: AC Optimal Power Flow

Optimization problem

min Cost(Py, ..., B,)
s.t. Supply-demand balance constraint €& A :Lagrange multiplier

Units and system physical constraints

* Non-convex, hard problem (multiple local solutions)
* Challenges: Randomness in renewable energy resources, need to deal
with lots of scenarios, get stuck at sub-optimal solutions

* Open Question: Escape from attraction of local solutions
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A Two Bus Network Example

* Transformed to unconstrained form
* The penalized form Bus 1 Generator

min Cost(Py, ..., P,)+"/, (constraint)? Bus 2 Load
p: Penalty parameter
Equivalent to original problem with p large enough Variable: @ I

 The Lagrangian
min Cost(Py, ..., B,)+A(constraint)

A: Lagrange multiplier related to the supply-demand balance constraint '"ASHINGTON



A Two Bus Network Example

e Use the penalized form to study the solutions to ACOPF

Function values

20.0 —— penalized
%  global minima
17.5 X local minima

0 in radius

How to escape from local
solutions without trying
many initialization?

A nonlinear solver initialized at

" this local solution can get stuck.
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A Two Bus Network Example

e Use the penalized form to study solutions to ACOPF

20.0 —— penalized
— Lagrangian
17.5 %  global minima
X local minima

Function values

A nonlinear solver initialized at
" this local solution can get stuck.
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A Two Bus Network Example

e Use the penalized form to study solutions to ACOPF

20.0 —— penalized
— Lagrangian
17.5 %  global minima
X local minima

The minimizer of the
Lagrangian is close to
the global solution.

Function values

A nonlinear solver initialized at
" this local solution can get stuck.

Can be a good warm
start.
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Our Algorithm

e Escape from local solutions and find global solution iteratively

Vo, 6(0)) [ ACOPF dual variable 2
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Use Learning to Speed Up
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Thanks
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