Deep Spatio-Temporal Forecasting of Electrical Vehicle Charging Demand

Tackling Climate Change with Machine Learning

Frederik Boe Hüttel¹, Inon Peled¹, Filipe Rodrigues¹ and Francisco C. Pereira¹.

¹ Department of Management, Technical University of Denmark, Lyngby, Denmark.

Introduction

- Electric Vehicles (EVs) offers low carbon emission solutions to reverse rising emission trends assuming the energy provided is green.
- Forecasting the Charging demand can help energy providers supplying green energy to meet the demand.
- One of the challenges in forecasting the EV charging demand is to model the complex spatial and temporal dependencies between Charging Stations.

Spatio-Temporal Forecasting

Consider a temporal signal $X = \{x_1, x_2, \dots, x_t\}$ and a topology G over the spatial domain.

Spatio-temporal forecasting can be viewed as learning a function f on topology G with temporal signal X.

$$[X_{t+1},\cdots,X_{t+T}]=f(G;(X_{t-n},X_{t-1},X_t)).$$

We parameterise the function f with Deep Learning

Topology

We consider multiple ways to model the topology:

- 1. A raster map over the spatial domain.
- 2. A Graph with EVCS as nodes and weighted edges with the distance between them

Modelling

To capture the spatial features, we apply:

- 1. Convolutional Neural Network
- 2. Graph Convolution Neural Network

To capture temporal dynamics, we apply *Long Short-term memory* on the extracted spatial features.

We denote the forecasted value as $\widehat{X}_{t+1:t+T}$ and the realised value as $X_{t+1:t+T}$ and train the model under mean absolute error:

$$\mathcal{L} = |X_{t+1:t+T} - \widehat{X}_{t+1:t+T}| + \lambda \beta^2.$$

Data

- The data consists of public EV charging transactional from Palo Alto⁵.
 - Contains energy consumed for each charging session.
 - We focus on using energy consumption (kWh) for a transaction.
- The consumption is aggregated into a daily energy demand for each of the stations in Palo Alto.

⁵ Data available at Link

Experimental results

We test the propose models for 3 different forecast horizons⁶:

Model	1 Day	7 Days	30 Days
AR(30)	178	251	252
VAR(30)	189	203	201
CNN	144	243	211
CNN + LSTM	95	192	187
T-GCN	61	184	161

⁶ Code available at: Github.

Conclusion

- We have argued for the use of publicly available data for forecasting the electric vehicle charging demand.
- Based on the experimental results, Graph Convolutional Networks have superior forecasting performance compared to other methods.
- We hope that the results and arguments encourage researchers to use publicly available data for research into EV charging demand.

