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Introduction

e Electric Vehicles (EVs) offers low carbon emission solutions to
reverse rising emission trends assuming the energy provided is

green.

e Forecasting the Charging demand can help energy providers
supplying green energy to meet the demand.

e One of the challenges in forecasting the EV charging demand is
to model the complex spatial and temporal dependencies
between Charging Stations.



Spatio-Temporal Forecasting

Consider a temporal signal X = {x1,z5,---,2; } and a topology G
over the spatial domain.

Spatio-temporal forecasting can be viewed as learning a function f
on topology GG with temporal signal X.

Xistse s Xevr) = F(G5 (Xiony Xio1, X)),

We parameterise the function f with Deep Learning



Topology

We consider multiple ways to model the topology:

1. A raster map over the spatial domain.

2. A Graph with EVCS as nodes and weighted edges with the distance between them
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Modelling

To capture the spatial features, we apply:

1. Convolutional Neural Network

2. Graph Convolution Neural Network

To capture temporal dynamics, we apply Long Short-term memory on the extracted spatial
features.

We denote the forecasted value as X ;1.;.r and the realised value as X;,1...7 and train
the model under mean absolute error:

L= |Xt—|-1:t—|—T — /X\t+1:t-|—T| + )‘182



Data

e The data consists of public EV charging
transactional from Palo Alto”.

e Contains energy consumed for each
charging session.

e We focus on using energy
consumption (kWh) for a transaction.

e The consumption is aggregated into a
daily energy demand for each of the
stations in Palo Alto.

> Data available at Link


https://data.cityofpaloalto.org/dataviews/257812/electric-vehicle-charging-station-usage-july-2011-dec-2020/

Experimental results

We test the propose models for 3 different forecast horizons®:

Model 1 Day 7 Days 30 Days
AR(30) 178 251 252
VAR(30) 189 203 201
CNN 144 243 211
CNN + LSTM 95 192 187
T-GCN 61 184 161

¢ Code available at: Github.


https://github.com/fbohu/Deep-Spatio-Temporal-Forecasting-of-Electrical-Vehicle-Charging-Demand

Conclusion

 We have argued for the use of publicly available data for forecasting the electric vehicle charging demand.

e Based on the experimental results, Graph Convolutional Networks have superior forecasting performance compared to other methods.

* We hope that the results and arguments encourage researchers to use publicly available data for research into EV charging demand.
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