A study of battery SoC scheduling using machine learning with renewable sources

Daisuke Kawamoto¹, Kotaro Jinushi¹, Hiroaki Kitano¹²

¹Sony Computer Science Laboratories Inc.

²Integrated Open Systems Unit, Okinawa Institute of Science and Technology

Climate Change Workshop, ICML 2021

Sony CSL

Latest trend in energy system

■ Distributed energy resources (DERs)

- High demand for carbon free energy (Carbon neutral, RE100, SBT etc.)
- Reductions to the cost of solar panels and batteries
- On-site renewable energy sources such as roof top solar and batteries are increasing

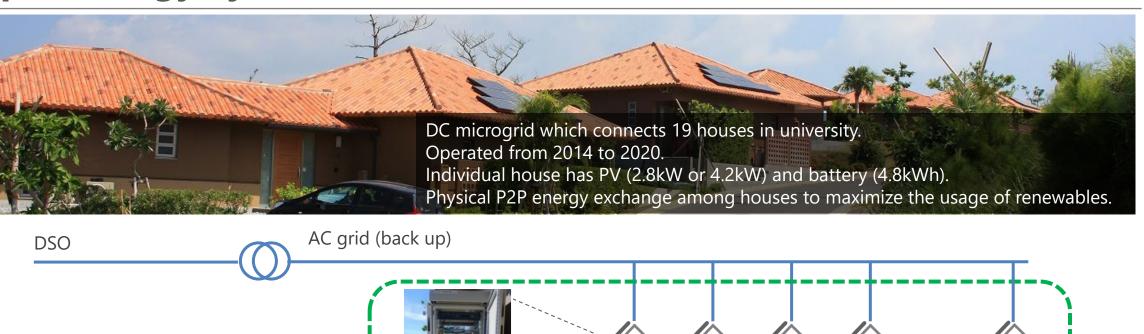
■ Microgrid

- Interconnecting DERs and sharing power within the community
- Efficient use of renewable energy and reduce greenhouse gas emissions
- Increase resilience to natural disasters

Open Energy System (OES)

DC grid

for energy exchange



Maximize the generation of renewable energy: 5% average, 25% max improvement Resilient against disaster: survive AC grid blackout

The core technology is available in open source: https://github.com/SonyCSL/APIS
Open source project with LF energy: https://www.lfenergy.org/projects/hyphae/

Architecture of OES

SoC: State of Charge

■ bottom-up, distributed energy system

- Consists of multiple subsystems with solar panels, batteries, and DC/DC converters
- Each subsystem has an energy-exchange scenario that describes the SoC* targets of the day
- If the SoC is lower than the target, the subsystem requests energy charging.
- If the SoC is higher than the target, the subsystem requests energy discharging
- The request is negotiated between the subsystems, and if the negotiation succeeds, the energy exchange is executed between the concerned subsystems.
- OES uses best-effort control logic with local optimization that does not require global knowledge

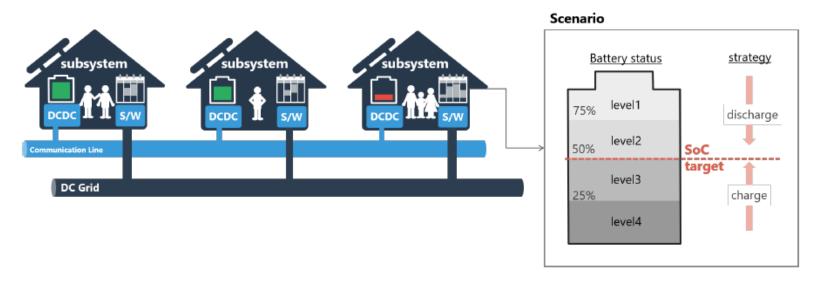
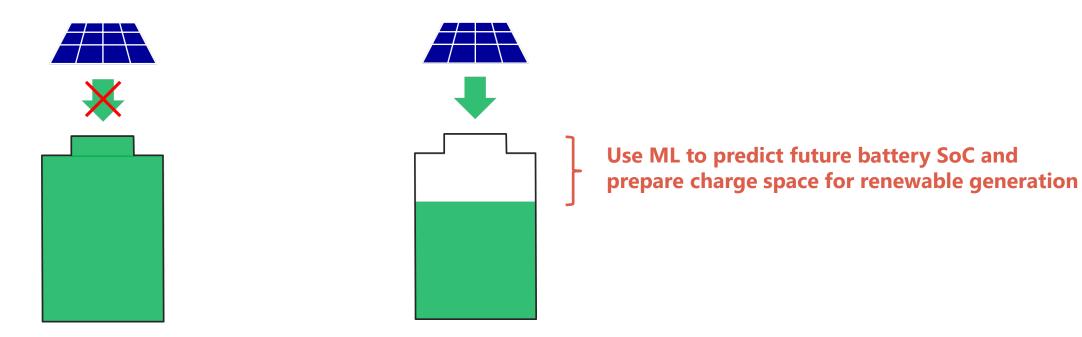


Figure 1. OES structure

Why machine learning?

■ Optimize battery SoC target and maximize renewable energy

- Keep charge space in the battery to prevent the surplus of renewable energy
- Predict the future battery state of charge (SoC) level and discharge battery energy before it becomes full
- Battery SoC could be predicted from the amount of energy generation and consumption forecast.



Fully charged -> surplus

Charge space -> introduce renewable energies

Proposed algorithm

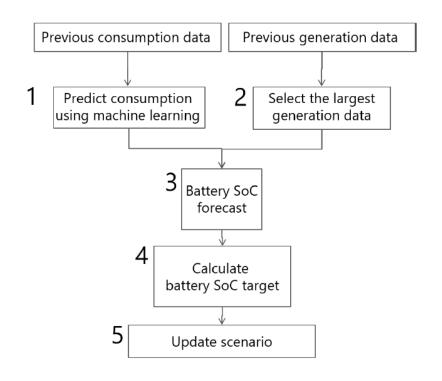


Figure 2. Scenario generation algorithm using machine learning

1. Predict consumption

$$X1_{d+1} = X1_{d+1,0}, X1_{d+1,1}, \cdots, X1_{d+1,23}$$

2. Select generation data

$$X2_{d+1} = X2_{d+1,0}, X1_{d+1,1}, \cdots, X2_{d+1,23}$$

3. Battery SoC forecast

$$\mathbf{Y}_{d+1} = Y_{d+1,0}, Y_{d+1,1}, \cdots, Y_{d+1,23}$$

$$Y_{d+1,i} = \frac{E_0 + \sum_{i=0}^{23} (X2_{d+1,i} - X1_{d+1,i})}{E_{full}}$$

4. SoC target

$$E_{surplus,i} = (Y_{d+1,i} - 100) \times E_{full}$$

$$\mathbf{SoC_{target}} = \mathbf{Y_{d+1}} - \frac{max(E_{surplus,i})_{i=0 \sim 23}}{E_{full}}$$

Prediction by machine learning

■ Conditions

- Input data
 - September 1 to 20, 2018
 - Okinawa's actual consumption data for six houses with 15-minute resolution and sun radiation data
- System configuration
 - The subsystem settings are 5.0 kWp for the solar panel, 10.0 kWh for the battery, and 2.5 kW for the DC/DC converter for energy exchange in each house.
- Models
 - Linear Regression, simple RNN (Elman-net), long short term memory (LSTM)

■ Result

Table 1. MAPE of consumption predictions for September 21

	Linear Regression	Elman-net	LSTM
House1	17.7%	7.0%	14.0%
House2	5.9%	1.9%	3.5%
House3	20.8%	5.0%	12.4%
House4	5.0%	5.4%	16.2%
House5	13.8%	5.5%	12.7%
House6	31.0%	11.5%	38.1%

Table 2. MAPE of consumption predictions for September 22

	Linear Regression	Elman-net	LSTM
House1	14.9%	5.9%	22.5%
House2	2.1%	1.7%	3.4%
House3	12.2%	4.7%	14.9%
House4	6.0%	5.3%	17.5%
House5	11.1%	5.8%	13.6%
House6	43.8%	13.7%	33.4%

■ Neural Network Console is used for machine learning

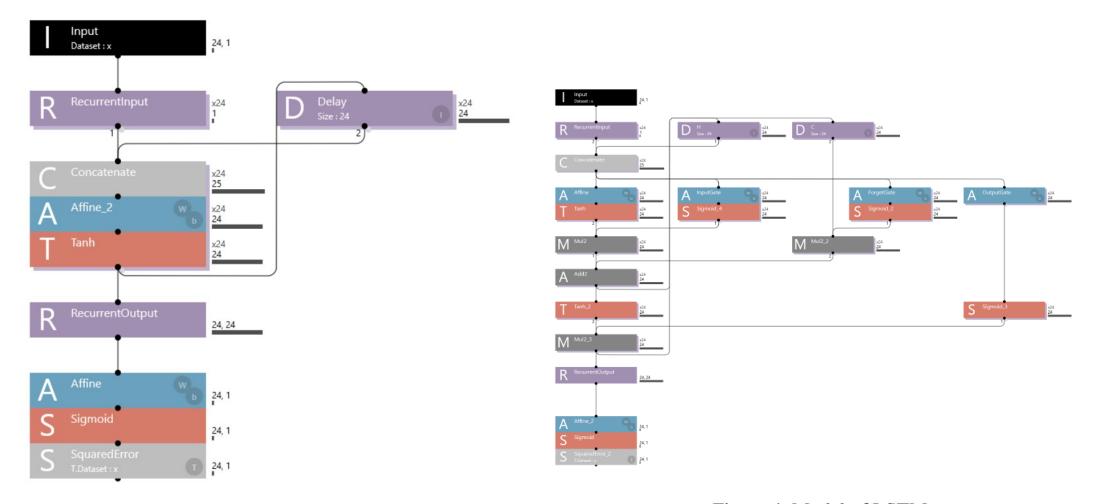


Figure 3. Model of Elman-net

Figure 4. Model of LSTM

Sony CSL

Consumption predictions

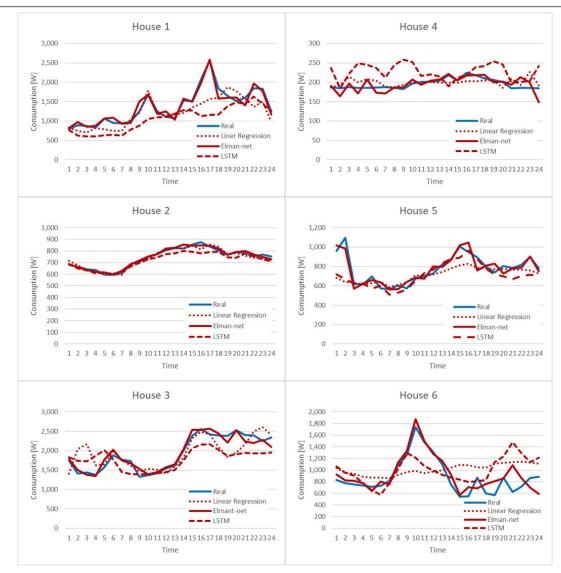


Figure 5. Consumption prediction results for Sept. 21

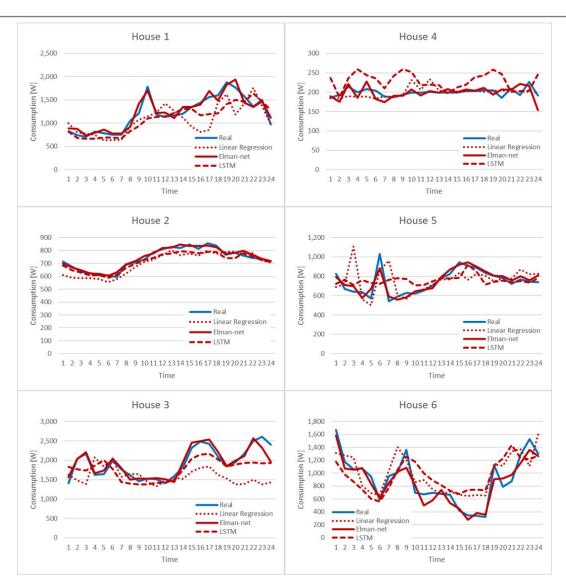


Figure 6. Consumption prediction results for Sept. 22

Scenario configurations

■ SoC target for the Scenario

- SoC prediction: future SoC predicted with Elman-net
- SoC target (new): SoC target to prevent solar surplus on the basis of the forecast
- SoC target (original): Original SoC target which sets to 50% for 24 hours

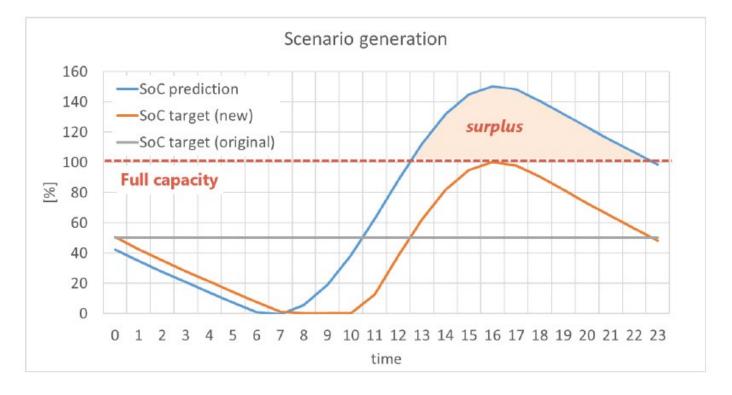


Figure 7. New scenario

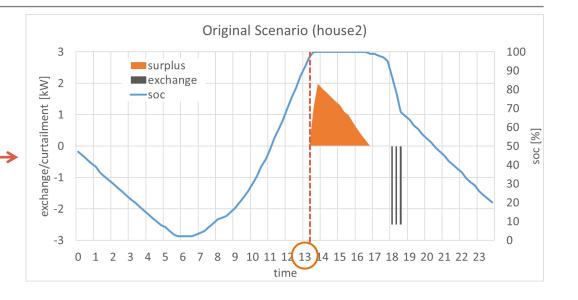
Renewable usage

■ Solar generation

- Case 1: All houses use the original battery SoC target
- Case 2: House 2 uses the new battery SoC target
- Case 3: All houses use the new battery SoC target

Table 3. Solar generation [kWh]

	Case1	Case2	Case3	
Community all	119.4	119.5	121.9	
House1	22.8	22.3	22.2	
House2	19.1	21.9	21.0	
House3	22.8	22.8	22.0	
House4	17.0	15.7	17.4	
House5	20.2	20.0	20.4	
House6	17.4	16.9	19.0	



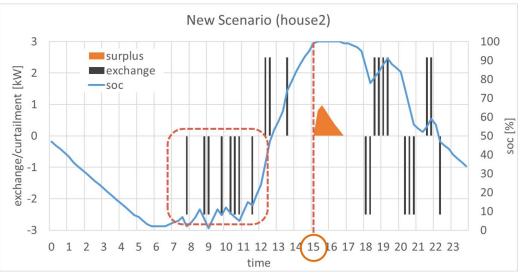


Figure 8. simulation result of house2

Conclusion / Future directions

■ Conclusion

- Elman-net showed the best accuracy in demand prediction
- Renewable energy generated in the can be increased by using the energy-exchange strategies based on demand forecasting results.

■ Future directions

- Improve accuracy of prediction by using long term demand data, adding external input variables such as weather.
- Study for the prediction time resolution which best match to the battery charge / discharge control.

Contact: info-oes@csl.sony.co.jp

Sony CSL