
A Set-Theoretic Approach to Safe
Reinforcement Learning in Power Systems

Daniel Tabas and Baosen Zhang
Department of Electrical and Computer Engineering
University of Washington, Seattle
ICML 2021 Workshop: Tackling Climate Change with Machine Learning
July 23, 2021



Introduction

Power systems are transitioning from synchronous generator-based
to inverter-based.

• More flexibility, less inherent stability
• Enables and necessitates new control techniques
• Increasing complexity→ difficult to find good policy
• New control policies must be safe
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Model

Power system stability requires balancing power supply with power
demand.

• Loads and renewables fluctuate, but energy storage can be used
to balance the fluctuations

• System operates under constraints: capacity limits (U,D) and
safety constraints (X)
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Previous work

• Lyapunov stability [1, 3, 7] and robust control guarantees [4, 5]
• Guarantee stability but not hard constraint satisfaction

• Optimization-based safety filters [2, 8]
• Calling an optimization solver in real time may not be practical

• Geometric approaches [9]
• Can lead the system into states that are safe but have no safe
action
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Policy network architecture

The current set of safe actions is a moving target for a policy
network.

• Changing geometry
• Difficult to parameterize
• Difficult to enforce as action constraints without solving
projection (LP) at best
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Output feature map

The set of safe combinations of base control actions has simpler
geometry than the set of safe actions. We can reach the set of safe
combos through a small number of iterative linear projections.

• Base control actions: safe actions associated with each vertex of
the safe set

• Safe combos: any convex weights that generate the current
state when applied to the vertices of the safe set
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Policy network architecture

• Policy parameterized by a
neural network and trained
using RL (DDPG algorithm [6])
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Simulations

Compared performance of our
method (blue) to a policy
network trained with a soft
penalty on constraint
violations (orange). Our
proposed method
demonstrated:
• Better rewards
• Far fewer constraint
violations throughout
training

• Better constraint
satisfaction during testing
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Conclusions and future work

Conclusions:

• Proposed computationally efficient safe RL paradigm for power
systems

Future work:

• Devise an output layer that has a closed-form solution
• Investigate robustness of learned policies to topology changes
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