EVGen: Adversarial Networks for Learning Electric Vehicle Charging Loads and Hidden Representations

July 23, 2021

Robert Buechler¹, Emmanuel Oreoluwa Balogun¹, Arun Majumdar¹, Ram Rajagopal²

Mechanical Engineering Department, Stanford University
Civil and Environmental Engineering Department, Stanford University

Why is EV modeling important?

Why is EV modeling important?

Representation Learning example

Controlling digit rotation

Controlling digit width

- (c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)
- (d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Baseline - Gaussian Mixture Model (GMM)

Adversarial Training with SC-WGAN-GP

Results

Results: Continuous Encoding

Continuous variable #1

Continuous variable #4

Continuous variable #5

Results: Discrete Encoding

- Each cell is a different discrete variable.
- Model is clearly able to disentangle different types of EV charging

Limitations & Possible Improvements

- The model is able to extrapolate beyond the dataset, but the extrapolation is not very interpretable.
- Statistical redundancy in charging types learned.
- Dataset is limited in spatial scope; a much larger dataset that covers major US cities could further augment this work.

Thank you