Sky image prediction using generative adversarial networks (GANs) for solar forecasting

Yuhao Nie¹, Andea Scott¹, Eric Zelikman², Adam Brandt¹

¹ Department of Energy Resources Engineering, Stanford University

² Department of Computer Science, Stanford University

ICML 2021 Workshop
Tackling Climate Change with Machine Learning
July 23, 2021

Global GHG emissions from different sectors

PV integration challenged by solar intermittency

- Integrating solar photovoltaics (PV) is promising to reduce the GHG emissions from power generation
- Large-scale PV integration is challenged by solar intermittency, mainly caused by shortterm cloud events
- 70%~80% loss of power could happen on partly cloudy day
- Solar forecasting is critical to alleviate the uncertainty in PV power generation

Image-based solar forecasting

An end-to-end convolutional neural network (CNN) model for solar forecasting¹ (SUNSET)

Performance on a cloudy day: 13% relative mean squared error (30 kW PV system)

Key challenges

- Temporal lags in predicting the ramp events (sudden power output changes)
- Accurately predicting the motion of clouds is pivotal to accurate solar forecasting

Cloud motion prediction via deep learning models

- Predict the future sky frame (f) based on the context sky image frames (c)
- Learn a mapping $G: \{c_{t-T}, ..., c_{t-1}, c_t\} \rightarrow f_{t+T}$ using deep learning models
- Commonly used deep learning models, e.g., ConvLSTM, could capture the cloud dynamics to certain degree, but the generated images look blurry.
- In this study, we explore generative adversarial networks (GANs) for future sky image generation

Cloud motion prediction via deep learning models

- Predict the future sky frame (f) based on the context sky image frames (c)
- Learn a mapping $G: \{c_{t-T}, \dots, c_{t-1}, c_t\} \rightarrow f_{t+T}$ using deep learning models
- Commonly used deep learning models, e.g., ConvLSTM, could capture the cloud dynamics to certain degree, but the generated images look blurry.
- In this study, we explore generative adversarial networks (GANs) for future sky image generation

Results and discussion

Fidelity of predicted future images

Results and discussion

Diversity of predicted future images

Results and discussion

Predicted future images for downstream solar forecasting

Test set RMSE (kW)

Conclusions

- The GAN model we developed can capture the cloud motion of the corresponding context frames and generate realistic future sky images
- The generated images can also be plugged in for the downstream solar forecasting tasks and achieve promising performance

Future work

- The diversity of the model needs to be improved to account for the stochasticity of cloud motion
- Integrate sequential models, such as ConvLSTM, as part of the GAN generator architecture to extract the temporal dynamics from the input sequence