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PV integration challenged by solar intermittency

* Integrating solar photovoltaics (PV) is
promising to reduce the GHG emissions

from power generation

 Large-scale PV integration is challenged by
solar intermittency, mainly caused by short-

term cloud events
«  70%~80% loss of power could happen on
partly cloudy day

«  Solar forecasting is critical to alleviate the

uncertainty in PV power generation
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Image-based solar forecasting
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Cloud motion prediction via deep learning models

* Predict the future sky frame (f) based on the context sky image frames (c)

* Learn a mapping G: {c;_7, ..., Ct—1, Ct} = fr+7 USING deep learning models

« Commonly used deep learning models, e.g., ConvLSTM, could capture the cloud dynamics to
certain degree, but the generated images look blurry.

* In this study, we explore generative adversarial networks (GANs) for future sky image generation
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GAN framework and experiments
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Results and discussion

Fidelity of predicted future images
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Results and discussion

Diversity of predicted future images
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Results and discussion

Predicted future images for downstream solar forecasting
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Conclusions

. The GAN model we developed can capture the cloud motion of the corresponding context frames and

generate realistic future sky images

. The generated images can also be plugged in for the downstream solar forecasting tasks and achieve

promising performance

Future work

. The diversity of the model needs to be improved to account for the stochasticity of cloud motion
. Integrate sequential models, such as ConvLSTM, as part of the GAN generator architecture to extract

the temporal dynamics from the input sequence
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