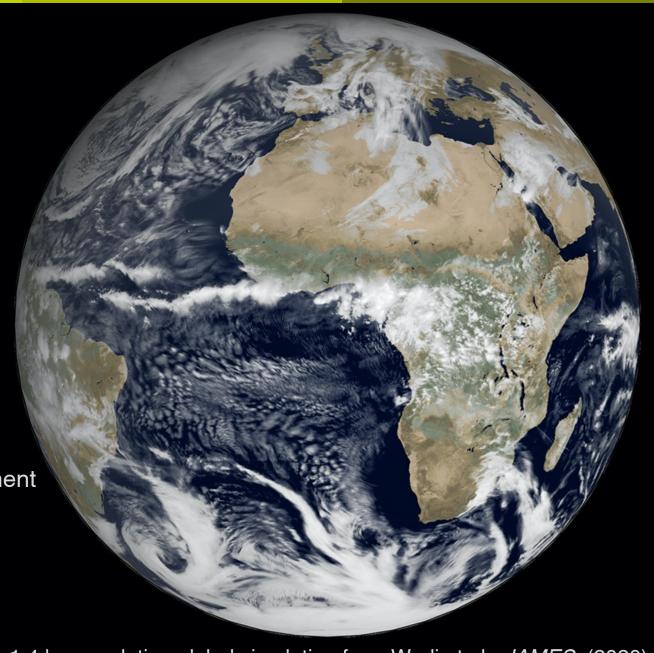
Toward efficient calibration of higher-resolution ESMs

Christopher G. Fletcher, W. McNally, J. G. Virgin

Department of Geography & Environmental Management

Funding: Microsoft AI for Earth, Waterloo AI Institute

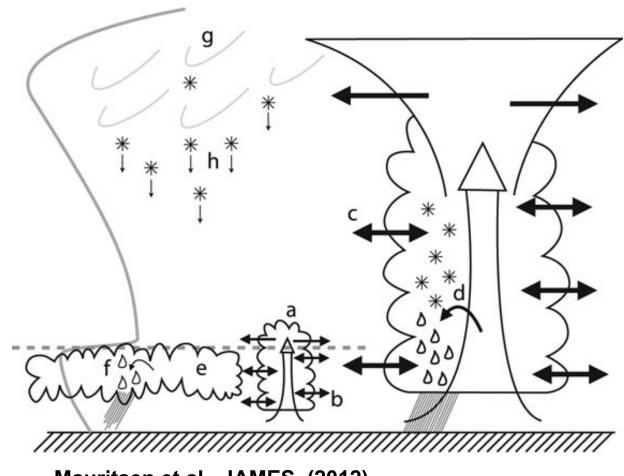


Introduction

- High-resolution (<10 km) simulations with ESMs are required to support adaptation planning and decision-making, especially for hydrologic change.
- CMIP6-class ESMs have spatial resolution ~100 km, so downscaling is required.
- Tuning/calibration is a major barrier to development of higher-resolution ESMs.
- Here we present a proof-of-concept study showing that a convolutional neural network can be used to reduce CPU time for ESM calibration.

Model calibration (aka Tuning)

- Unresolved (sub-grid scale) processes involve poorly constrained parameters
- Esp. clouds, precipitation, radiation.



Mauritsen et al., JAMES, (2012)

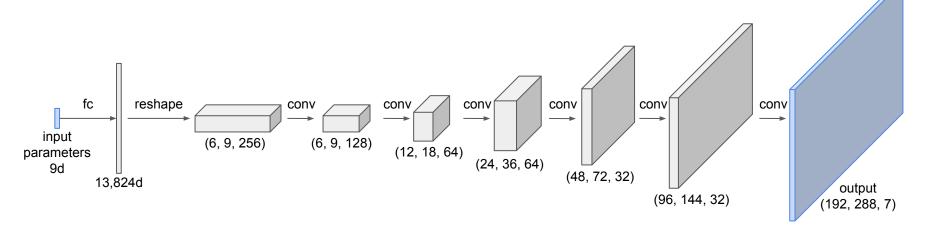
CLIMATE MODEL SIMULATIONS

- CESM1.0.4 F-compset: CAM4 physics, 1850 SSTs and sea ice.
- Run identical 100-member PPEs at f09, f19 and f45 resolutions
- Each realization is run for 36 months
- Analyze annual climatologies
- Upscale f19 and f45 outputs to f09 grid (192 x 288)

Parameter	Description (CAM4 parameter name)	Min	Default	Max
x_1	Fraction of hygroscopic SO ₄	0.0	0.0	1.0
<i>x</i> ₂	Spatial uniformity of BC $(1 = globally uniform)$	0.0	0.0	1.0
<i>x</i> ₃	Scaling factor for global BC mass	0.0	1.0	40.0
<i>x</i> ₄	Altitude for insertion of uniform BC layer	0.0	_	39.0
<i>x</i> ₅	RH threshold for low cloud formation (cldfrc_rhminl)	0.80	0.88	0.99
<i>x</i> ₆	Effective radius of liquid cloud droplets over ocean (cldopt_rliqocean)	8.4	14.0	19.6
<i>x</i> 7	Timescale for consumption rate of shallow CAPE (hkconv_cmftau)	900	1800	14 440
<i>x</i> ₈	RH threshold for high cloud formation (cldfrc_rhminh)	0.50	0.50	0.85
<i>x</i> 9	Timescale for consumption rate of deep CAPE (zmconv_tau)	1800	3600	28 800

Covey et al. (2013); Fletcher et al., *ACP*, (2018)

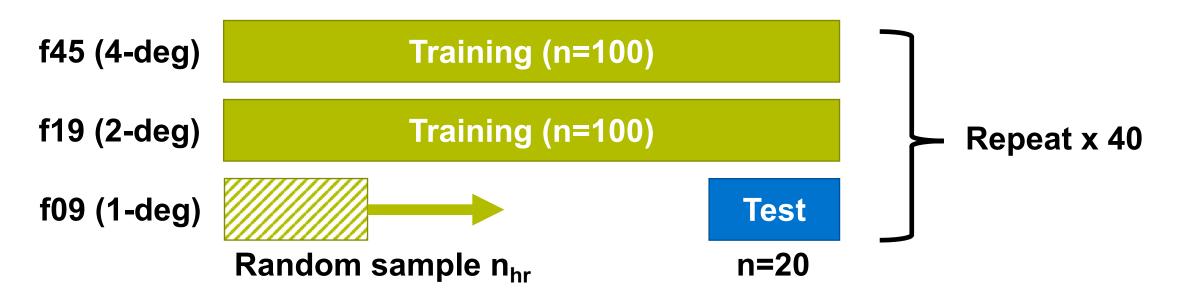
CNN ARCHITECTURE



- Input: 9d vector of parameter values projected to 13,824d then 6 x 9 x 256.
- Series of transpose convolutions (+ batch normalization and leaky rectified linear unit)
- Output is array of predictions 192 x 288 x 7, where 7 is number of variables.
- CNN implemented in TensorFlow 2.2 using Keras API.

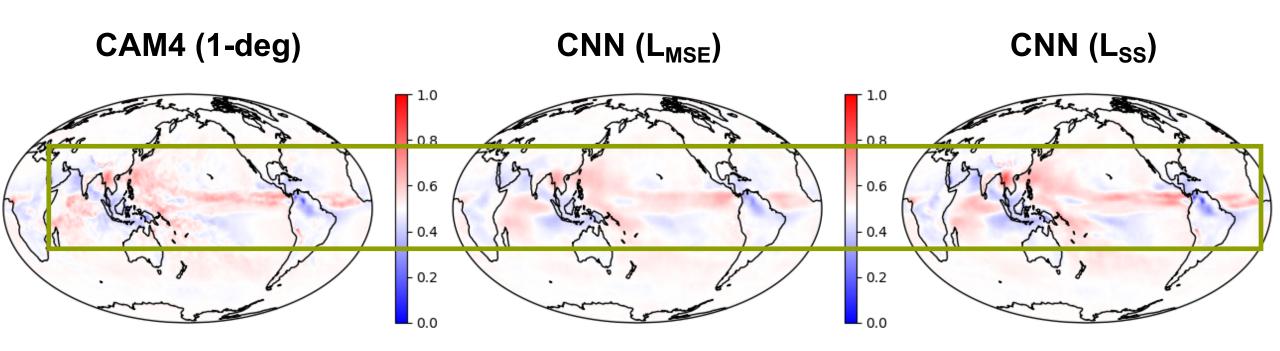
LOW-TO-HIGH RES EMULATOR

Methods Results Conclusions



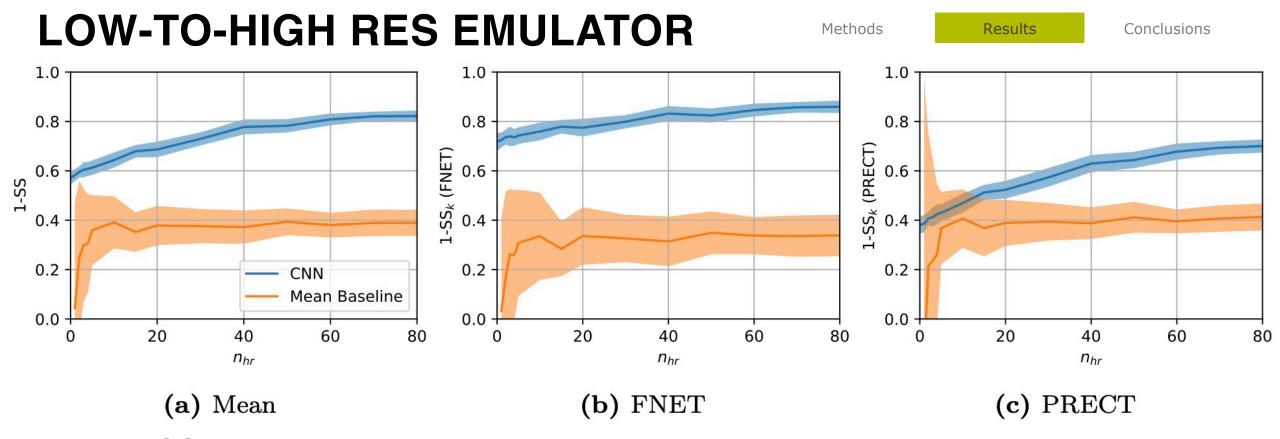
- Inspired by Anderson and Lucas (2018): Train CNN on lower-resolution (f45 and f19) cases, plus an increasing number (n_{hr}) of f09 cases.
- Quantify SS for predicting n=20 unseen high-res cases at different values of n_{hr}
- Compare to a baseline prediction: annual climatological mean difference

RESULTS



Realization 2 of 20

- Averaged over all realizations, cross-validated SS = 0.82 (0.73 for precipitation)
- Skill is ~25% higher using L_{SS} than L_{MSE}.



- Mean SS ~ 0.6 with only low-res cases; increases to 0.8 including high-res cases.
- Skill plateaus at n_{hr} ~ 40: limited benefit from running more high-res cases.
- CNN skill exceeds baseline when $n_{hr} > 10$, even for precipitation.

Conclusions

- We present a ML-based method that could support calibration of highresolution ESMs.
- The CNN accurately predicts the spatially-resolved impacts of nine tuning parameters on atmospheric outputs in CAM4, even for precipitation.
- Using the CNN reduces required CPU time by 20-40%. Potential extensions to seasonal, regional outputs, <u>high</u>-resolution, and timeevolving simulations.
- Operational settings require simultaneous calibration of multiple components, fully-coupled integrations (not just atmosphere).

Thank you!

C. G. Fletcher, W. McNally, J. G. Virgin: *Toward efficient calibration of higher-resolution ESMs* (in prep)

chris.fletcher@uwaterloo.ca

https://uwaterloo.ca/scholar/c5fletch/

@ClimoChris

EXTRA SLIDES

Methods

Results

Conclusions

- Train CNN to predict <u>differences</u> due to parameters: perturbed default.
- Normalize predictors (x) and target difference maps (Y)
- Train on two different loss functions: L_{MSE} and L_{SS} (SS from Pierce et al. 2009)
- Quantify accuracy of predictions using MSE and SS metrics between CESM simulation and predictions by CNN

HIGH-RES EMULATION EXAMPLE

Methods

Results

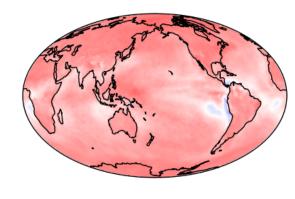
Conclusions

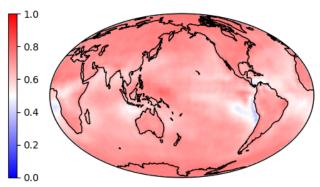
CAM4 (1-deg)

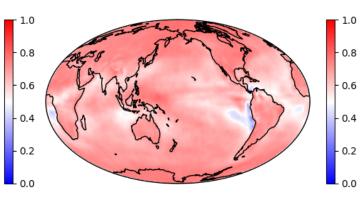
CNN (L_{MSE})

CNN (L_{ss})

RESTOM







(a) FNET

(b) MSE_k : 2.32e-4, 1- SS_k : 0.931 (c) MSE_k : 2.20e-4, 1- SS_k : 0.949

PRECT

