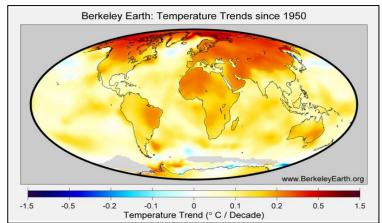
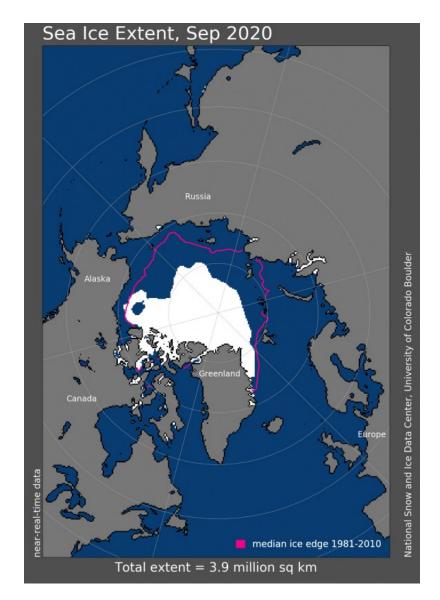


MOTIVATION

- Warming of the sea ice in the Arctic has been almost twice faster than the rest of the world [1].
- Decline in sea ice exerts a large influence on the Earth's atmosphere, forecasting transporting routes, resource development, coastal erosion, threats to Arctic coastal communities and wildlife.
- 2021's historic cold snap in Texas and Oklahoma, resulted in at least 176 fatalities and \$195 billion economic loss [2].





September 2020 sea—ice extent map.

Image courtesy of the National Snow and Ice Data Center

INTRODUCTION

- Recent shift from physics-based earth system models to statistical and machine learning models for sea ice forecasting.
- LSTM [3], CNN [4] and Convolutional LSTM [5] based models have been able to predict Sea Ice Concentration (SIC) with 9-22% RMSE loss.
- We propose a sea ice forecasting system with Attention-based Ensemble Long Short-Term Memory (LSTM) networks to predict monthly sea-ice extent with a lead time of 1 month.
- Our contribution:
 - An ensembling method for multi-temporal Deep Learning model.
 - Forecasting sea ice concentrations with a lead time of 1 month with RMSE $\sim 4\%$.
 - Incorporating attention-mechanism to assign importance score to the features.

DATASET

- Time Series Data 1979 2018
 - Daily data: 14,160 temporal records
 - Monthly data: 480 temporal records
- Geolocation: >30N in Northern Hemisphere
- Sources of data:
 - Nimbus-7 SSMR and DMSP SSM/I-SSMIS passive microwave data version: Sea-ice concentrations [6].
 - ERA-5 global reanalysis product: Atmospheric and Ocean variables.

Sr No.	Variable	Range	Unit
1	surface pressure	[40000,110000]	Pa
2	wind velocity	[0,40]	m/s
3	specific humidity	[0,0.1]	kg/kg
4	air temperature	[200,350]	K
5	shortwave radiation	[0,1500]	W/m2
6	longwave radiation	[0,700]	W/m2
7	rain rate	[0,800]	mm/day
8	snowfall rate	[0,200]	mm/day
9	sea surface temperature	[200,350]	K
10	sea surface salinity	[0,50]	PSU
11	sea ice concentration	[40000,110000]	%

OVERALL ARCHITECTURE: ATTENTION-BASED LSTM ENSEMBLE (EA-LSTM)

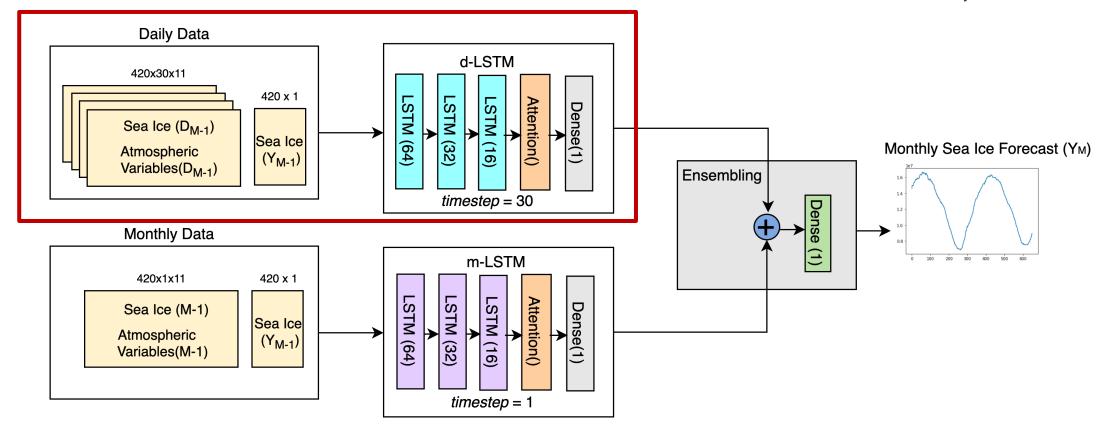


Figure: Overall architecture of the Attention-based LSTM Ensemble (EA-LSTM). Here, D_{M-1} and M-1 corresponds to daily and monthly records from preceding month and Y_{M-1} represent sea-ice values from preceding month, whereas, Y_{M} represents predictions for the next month.

OVERALL ARCHITECTURE: ATTENTION-BASED LSTM ENSEMBLE (EA-LSTM)

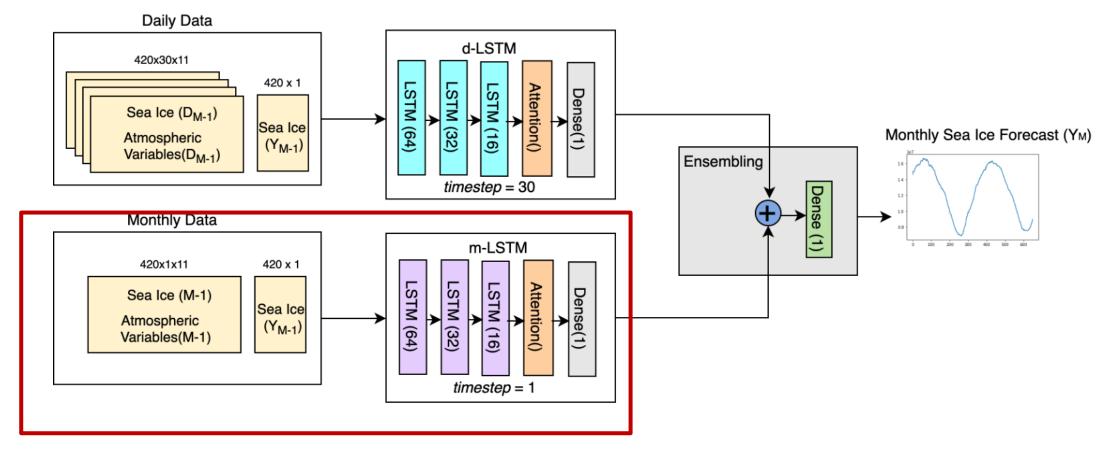


Figure: Overall architecture of the Attention-based LSTM Ensemble (EA-LSTM). Here, D_{M-1} and M-1 corresponds to daily and monthly records from preceding month and Y_{M-1} represent sea-ice values from preceding month, whereas, Y_{M} represents predictions for the next month.

OVERALL ARCHITECTURE: ATTENTION-BASED LSTM ENSEMBLE (EA-LSTM)

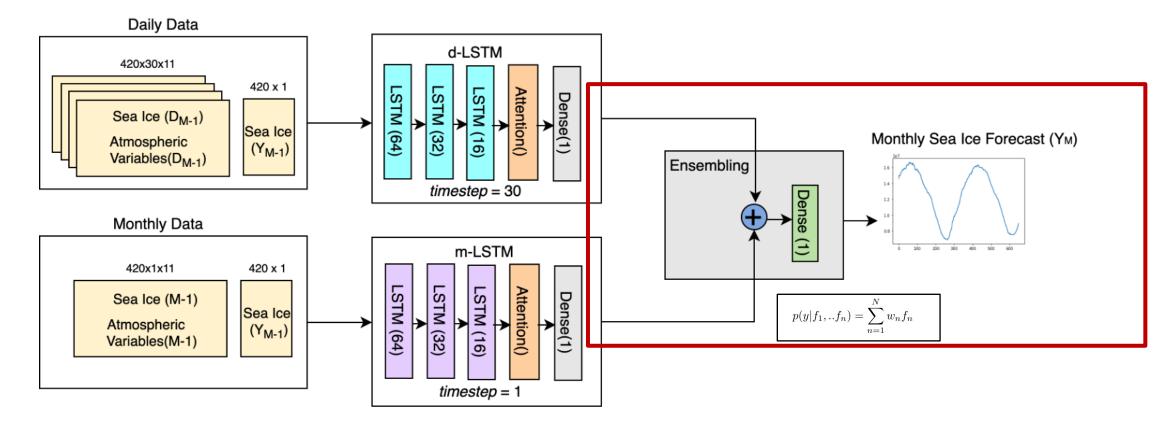


Figure: Overall architecture of the Attention-based LSTM Ensemble (EA-LSTM). Here, D_{M-1} and M-1 corresponds to daily and monthly records from preceding month and Y_{M-1} represent sea-ice values from preceding month, whereas, Y_{M} represents predictions for the next month.

EXPERIMENTAL RESULTS

Model Type: proposed / baseline	Model	R ² SCORE	% RMSE
Baseline Model	Linear Regression	0.974	5.05
Baseline Model	Decision Tree	0.963	6.00
Baseline Model	Random Forest	0.978	4.63
Baseline Model	XGBoost	0.976	4.83
Baseline Model	Polynomial Regression	0.966	5.76
Proposed Model	d-LSTM	0.980	4.45
Proposed Model	m-LSTM	0.981	4.21
Proposed Model	E-LSTM	0.977	4.60
Proposed Model	EA-LSTM	0.982	4.11

COMPARATIVE ANALYSIS

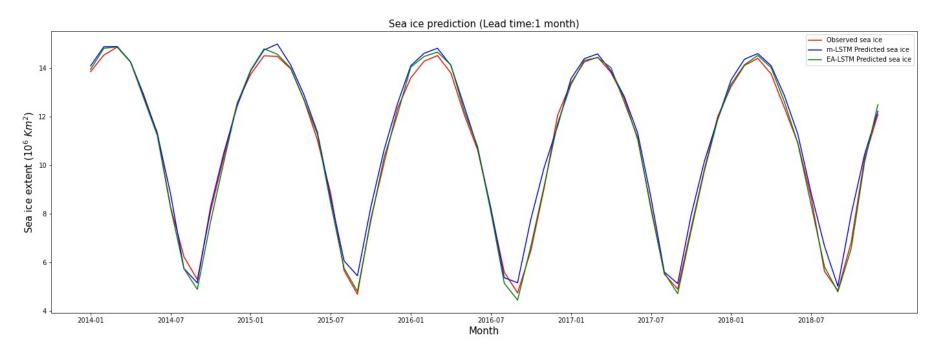


Figure: Time-Series Plot of Sea Ice observational data, m-LSTM predictions and EA-LSTM predictions for January 2014 - December 2018.

- Both m-LSTM and EA-LSTM perform well in predicting Sea Ice values for Oct Jan, Apr-Aug.
- EA-LSTM performs better than m-LSTM in predicting maximum and minimum Sea Ice values i-e Feb-Mar, Sept.

CONCLUSION & FUTURE WORK

Conclusion:

- We present an attention-based LSTM ensemble method to predict monthly sea-ice values with a lead time of 1 month.
- Our proposed model can be extended to include more models having different temporal resolutions and learn their weighted average using the ensembling technique.

Future Work:

- Extend our proposed ensemble method to combine spatiotemporal models with different spatial and temporal resolutions.
- We also plan to visualize the attention weights learned from these intermediary attention layers to better interpret the underlying working of deep learning models.

REFERENCES

- 1. Holland, M. M. and Bitz, C. M. Polar amplification ofclimate change in coupled models. Climate Dynamics, 21(3-4):221–232, 2003.
- 2. Freedman, A., Muyskens, J., and Samenow, J. The historiccold snap and snow by the numbers. Washington Post, Feb 2021. URLhttps://www.washingtonpost.com/weather/2021/02/24/texas-winter-storm-temperature-records/.
- 3. Chi, J. and Kim, H.-c. Prediction of arctic sea ice con-centration using a fully data driven deep neural net-work.Remote Sensing, 9(12), 2017. ISSN 2072-4292.doi: 10.3390/rs9121305. URLhttps://www.mdpi.com/2072-4292/9/12/1305.
- 4. Wang, L., Scott, K. A., and Clausi, D. A.Sea iceconcentration estimation during freeze-up from sar im-agery using a convolutional neural network.RemoteSensing, 9(5), 2017.ISSN 2072-4292.doi: 10.3390/rs9050408. URLhttps://www.mdpi.com/2072-4292/9/5/408.
- 5. Liu, Q., Zhang, R., Wang, Y., Yan, H., and Hong, M. Dailyprediction of the arctic sea ice concentration using reanal-ysis data based on a convolutional lstm network. Journal of Marine Science and Engineering, 9(3), 2021. ISSN 2077-1312. doi: 10.3390/jmse9030330. URL https://www.mdpi.com/2077-1312/9/3/330.
- 6. Holland, M., Landrum, L., Bailey, D. and Vavrus, S., 2021. Changing Seasonal Predictability of Arctic Summer Sea Ice Area in a Warming Climate. Journal of Climate, 32(16):4963-4979, 2019.
- 7. Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J. Sea ice concentrations from nimbus-7 smmr and dmsp ssm/i-ssmis passive microwave data, version 1.1996. doi: https://doi.org/10.5067/8GQ8LZQVLOVL.

THANK YOU!