

Refining Ice Layer Tracking through Wavelet combined Neural Networks

Debvrat Varshney, Masoud Yari, Tashnim Chowdhury, Maryam Rahnemoonfar

University of Maryland Baltimore County

Introduction

- Ice layer tracking is essential to analyse and assess climate change
- Ice sheets are monitored through airborne radar sensors (Figure 1)
- Deep learning based edge detection networks have been successful in extracting ice layers [1]
- Radar images are noisy, and the algorithms predict extra edges at times
- Wavelet transform (WT) helps in denoising a signal

Figure 1

Methodology

- VGG 13 backbone
- WT of each side output is taken
- Detail coefficients are concatenated with the next stage's side output
- The entire network is deeply supervised

Results

Radargram Ground Truth Base Ours (haar) Ours (debauchies)

Results

Network	Wavelet	ODS	OIS
Base	None	0.726	0.764
WT4	Haar	0.728	0.759
Ours	Haar	0.740	0.766
Ours	Debauchies	0.746	0.780

Table 1. ODS and OIS F-measures obtained by different networks

Conclusion

- Convolving on the detail coefficients of each scale helps in detecting deeper ice layers
- Wavelet transform helps in denoising and when combined with a convolutional layer helps in feature learning
- Method has potential to be used for tracking layers 2-3km deep

References

[1] M. Yari, M. Rahnemoonfar, J. Paden, I. Oluwanisola, L. Koenig and L. Montgomery, "Smart Tracking of Internal Layers of Ice in Radar Data via Multi-Scale Learning," 2019 IEEE International Conference on Big Data (Big Data), 2019, pp. 5462-5468, doi: 10.1109/BigData47090.2019.9006083.

Thank You

