Self-Supervised Learning on Multispectral Satellite Data for Near-Term Solar Forecasting

Akansha Singh Bansal

Trapit Bansal

David Irwin

Energy and the Grid: A difficult balancing act

- Tight balance between varied generators and consumers
 - Failure to do so causes power surge or power outage

Energy and the Grid: A difficult balancing act

- Tight balance between varied generators and consumers
 - Failure to do so causes power surge or power outage

Energy and the Grid: A difficult balancing act

- Tight balance between varied generators and consumers
- Failure to do so causes power surge or power outage
- Solar is diffused, intermittent and volatile
 - Making it unreliable source of energy

Solar Forecasting

 Solar is intermittent and its output can change in matter of minutes to hours considerably

Highest variation = 75% of max solar generation

Minute-level Solar generation day from single day and single site

Solar Forecasting

 Solar is intermittent and its output can change in matter of minutes to hours considerably

Highest variation = 75% of max solar generation

Minute-level Solar generation day from single day and single site

Solar Power is Intermittent

Solar Forecasting

- Solar forecasts predict future solar output based on forecasts of physical factors
 - e.g., location, time-of-day, day-of-year, cloud cover, temperature

Solar Forecasting

- Solar forecasts predict future solar output based on forecasts of physical factors
 - e.g., location, time-of-day, day-of-year, cloud cover, temperature

Near-term solar forecasts

- Solar output predictions on a scale of minutes to hour
- Allow homes and grid to adapt to large sudden changes in solar output

Solar Forecasting: Prior Approaches

Numerical Weather Predictions (NWP) Models

- Exploit meteorological physics or atmospheric trends
- Limited capability to predict smaller changes or clouds
- Appropriate for hours to days ahead predictions

Solar Forecasting: Prior Approaches

Numerical Weather Predictions (NWP) Models

- Exploit meteorological physics or atmospheric trends
- Limited capability to predict smaller changes or clouds
- Appropriate for hours to days ahead predictions

Solar forecasting using sky imagery

- Requires additional infrastructure like sky camera
- Site-specific & not scalable

Solar Forecasting: Prior Approaches

Numerical Weather Predictions (NWP) Models

- Exploit meteorological physics or atmospheric trends
- Limited capability to predict smaller changes or clouds
- Appropriate for hours to days ahead predictions

Solar forecasting using sky imagery

- Requires additional infrastructure like sky camera
- Site-specific & not scalable

Cloud motion vector models

- Forecasts based solely on the recent past motion
- Does not capture atmospheric dynamics

Solar Forecasting: New Approach

- Use multispectral GOES-R satellite data directly to predict solar
 - Satellite data is made publicly available in near real-time
- Exploit spatio-temporal aspects of multispectral channel data

A New Opportunity: Launch of GOES-R Satellites

- NOAA launching new generation of geostationary satellites
 - GOES-16 launched 12/17, GOES-17 launched 2/18
 - Satellite data is made publicly available in near real-time

A New Opportunity: Launch of GOES-R Satellites

- NOAA launching new generation of geostationary satellites
 - GOES-16 launched 12/17, GOES-17 launched 2/18
 - Satellite data is made publicly available in near real-time

- Multi-Spectral Data offers unprecedented resolution
 - Senses 16 different spectral bands of light
 - Spatial every 0.5-2km² across U.S.
 - *Temporal* released every 5 minutes

60 mins ~42 km²

Satellite Data Contains Information about Changes in Solar Output

Solar generation synchronizes with first three channel

Source: Luciano Mescia

Satellite Data Contains Information about Changes in Solar Output

Solar generation synchronizes with first three channel

Source: Luciano Mescia

Satellite Data Contains Information about Changes in Solar Output

Multispectral channel data captures information about small changes

15:01 UTC 28 June 2020

5-Minute True Color (RGB) Imagery from GOES-16 (1-hour window)

End to End Solar Forecasting Framework

- Spatio-temporal aspects of channel data capture information about-
 - Atmospheric changes
 - Cloud movements

Near-Term Channel Forecast

23

End to End Solar Forecasting Framework

- Spatio-temporal aspects of channel data capture information about-
 - Atmospheric changes
 - Cloud movements

Local Model for Solar Prediction

Convolution Neural Networks

Extracting features for one location

Convolution Neural Networks

Convolution Neural Networks

Convolution Neural Networks

Convolution Neural Networks with LSTM

• End to end near-term solar forecasting

Results from Channel Prediction Models

Results from end-to-end Solar Prediction Models

Upper-bound using ground truth observation Using forecasted channel values through CNN-LSTM model Lower-bound using $C_{(t-1)}$ as naïve forecast Past predicts future baseline

Thank You!

Akansha Singh Bansal

www.akanshasinghbansal.com

