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Harnessing Solar Potential To Power the Planet

Global Energy Demand
is 20 TW
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Energy and the Grid: A difficult balancing act

UtilityGeneration

• Tight balance between varied generators and consumers
• Failure to do so causes – power surge or power outage 

Demand
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Energy and the Grid: A difficult balancing act

UtilityGeneration

• Tight balance between varied generators and consumers
• Failure to do so causes – power surge or power outage 
• Solar is diffused, intermittent and volatile

• Making it unreliable source of energy

Demand
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• Solar is intermittent and its output can change in matter of minutes to 
hours considerably
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• Solar is intermittent and its output can change in matter of minutes to 
hours considerably
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Solar Power is Intermittent
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Solar Forecasting

• Solar forecasts - predict future solar output based on forecasts of 
physical factors
• e.g., location, time-of-day, day-of-year, cloud cover, temperature
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Solar Forecasting

• Solar forecasts - predict future solar output based on forecasts of 
physical factors
• e.g., location, time-of-day, day-of-year, cloud cover, temperature

• Near-term solar forecasts
• Solar output predictions on a scale of minutes to hour
• Allow homes and grid to adapt to large sudden changes in solar output
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Solar Forecasting: Prior Approaches

• Numerical Weather Predictions (NWP) Models 
• Exploit meteorological physics or atmospheric trends
• Limited capability to predict smaller changes or clouds
• Appropriate for hours to days ahead predictions
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Solar Forecasting: Prior Approaches

• Numerical Weather Predictions (NWP) Models 
• Exploit meteorological physics or atmospheric trends
• Limited capability to predict smaller changes or clouds
• Appropriate for hours to days ahead predictions

• Solar forecasting using sky imagery
• Requires additional infrastructure like sky camera
• Site-specific & not scalable

• Cloud motion vector models
• Forecasts based solely on the recent past motion 
• Does not capture atmospheric dynamics
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Solar Forecasting: New Approach

• Use multispectral GOES-R satellite data directly to predict solar
• Satellite data is made publicly available in near real-time

• Exploit spatio-temporal aspects of multispectral channel data
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A New Opportunity: Launch of GOES-R Satellites

• NOAA launching new generation of geostationary satellites
• GOES-16 launched 12/17, GOES-17 launched 2/18
• Satellite data is made publicly available in near real-time
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A New Opportunity: Launch of GOES-R Satellites

• NOAA launching new generation of geostationary satellites
• GOES-16 launched 12/17, GOES-17 launched 2/18
• Satellite data is made publicly available in near real-time

• Multi-Spectral Data offers unprecedented resolution
• Senses 16 different spectral bands of light
• Spatial – every 0.5-2km2 across U.S.
• Temporal – released every 5 minutes

5 mins
0.5 – 2 km2

60 mins
~42 km2
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19GOES-R Series  – 16 Channels, 2 VIS, 4 Near-IR, 10 IR

0.64 µm

3.9 µm 6.2 µm
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6.9 µm 7.3 µm 8.4 µm 9.6 µm

0.47 µm 0.86 µm 1.37 µm

1.6 µm 2.2 µm



Satellite Data Contains Information about Changes in Solar Output

• Solar generation synchronizes with first three channel
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• Solar generation synchronizes with first three channel

19GOES-R Series  – 16 Channels, 2 VIS, 4 Near-IR, 10 IR
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• Multispectral channel data captures information about small changes

5-Minute True Color (RGB) Imagery from GOES-16 (1-hour window)
Akansha@UMass Amherst
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Satellite Data Contains Information about Changes in Solar Output



End to End Solar Forecasting Framework

• Spatio-temporal aspects of channel data capture information about-
• Atmospheric changes
• Cloud movements 

Near-Term Channel Forecast
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End to End Solar Forecasting Framework

• Spatio-temporal aspects of channel data capture information about-
• Atmospheric changes
• Cloud movements 

Near-Term Channel Forecast Local Model for Solar Prediction
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• Convolution Neural Networks
• Extracting features for one location

Self- Supervised Models on Time Series Data
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• Convolution Neural Networks
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• Convolution Neural Networks
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• Convolution Neural Networks

Self- Supervised Models on Time Series Data
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• Convolution Neural Networks with LSTM

Self- Supervised Models on Time Series Data
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• End to end near-term solar forecasting

Self- Supervised Models on Time Series Data
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Results from end-to-end Solar Prediction Models
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Thank You!

Akansha Singh Bansal
www.akanshasinghbansal.com
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