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Climate change and extreme 
precipitation

– Climate change has been linked to the increase in 
intensity and frequency of extreme events

– Extreme rainfall can cause flooding, crop damage, 
and widespread disruption to ecosystems

– Predicting such events in advance is critical for 
better preparedness

– Predicting the likelihood of extreme precipitation 
at seasonal scales remains a significant challenge
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Extreme precipitation 
seasonal forecast

Machine learning may offer an answer:

– Recent works have shown that machine learning 
models offer encouraging performance

– These models tend to rely on slowly-changing 
variables, such as soil moisture and ENSO 
indices

– Most of these variables are publicly available, 
but their degree of influence varies in space and 
time

Our proposal:

– A machine learning approach to forecasting the 
maximum precipitation in a week up to six 
months ahead

– Apply the temporal fusion transformer (TFT) to 
improve results:

• It combines multi-horizon forecasting with 
specialized components to select relevant 
inputs and suppress unnecessary features

• It produces quantiles as its outputs
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Extreme precipitation 
seasonal forecast – I/O

Target (green): maximum daily precipitation in each 
week

Input: structured into two classes:

– Static covariates (yellow) – e.g., lat/lon position

– Time-dependent features comprise:

• Observed inputs (blue) – e.g., historical rainfall

• Known inputs (pink) – e.g., day-of-week
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The transformer architecture

Temporal Fusion Transformer main parts:

– Embeddings for categorical and continuous
variables
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The transformer architecture

Temporal Fusion Transformer main parts:

– Embeddings for categorical and continuous
variables

– Gating mechanisms select the most relevant 
parts of the data
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The transformer architecture

Temporal Fusion Transformer main parts:

– Embeddings for categorical and continuous
variables

– Gating mechanisms select the most relevant 
parts of the data

– LSTM nodes capture temporal correlations
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The transformer architecture

Temporal Fusion Transformer main parts:

– Embeddings for categorical and continuous
variables

– Gating mechanisms select the most relevant 
parts of the data

– LSTM nodes capture temporal correlations

– Self-attention mechanism to learn long-term 
relationships across different time steps
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The transformer architecture

Temporal Fusion Transformer main parts:

– Embeddings for categorical and continuous
variables

– Gating mechanisms select the most relevant 
parts of the data

– LSTM nodes capture temporal correlations

– Self-attention mechanism to learn long-term 
relationships across different time steps

– Three quantile outputs, 0.1, 0.5, and 0.9
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Experiments – variables
Datasets
– Historical data
• CHIRPS v2 (USGS/UC Santa Barbara)

– Precipitation
• ERA5 reanalysis data (C3S)

– Volumetric soil water layer 1 (single-level)
– Geopotential 500 mb (pressure level)

– Future data
• Niño 3.4 index (JAMSTEC)
• Climatology

– 2-meter temperature (ERA5)
– Precipitation (CHIRPS)

– Known data
• Month of the year

– Static data
• Latitude
• Longitude
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Experiments – pre-processing

– Spatial resolution: 0.25

• CHIRPS: spatial max pooling to go from 0.05 to 0.25

– Temporal resolution: week

• Weekly maximum for precipitation

• Weekly mean for soil moisture and geopotential

– Dataset split

• 1981-2010: train

• 2011-2014: valid

• 2015-2019:  test
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Rio de Janeiro Florida

Experiments – regions

– Rio de Janeiro, 
Brazil

– Florida, USA

– The areas were 
divided into smaller 
subregions

– Each model is 
responsible for one 
subregion
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Experiments – q-risk results

Q-risk (w26)

– Metric based on the 
quantile loss

• It divides the 
quantile loss by the 
sum of absolute 
values of the targets
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Comparison Region 0.1 0.5 0.9

(𝑐𝑙𝑖𝑚𝑜 − 𝑇𝐹𝑇)
𝑐𝑙𝑖𝑚𝑜

Rio 2.45% 0.90% 1.08%

Florida -2.16% -0.41% 3.70%

(𝑆5 − 𝑇𝐹𝑇)
𝑆5

Rio 3.71% 11.18% 29.54%

Florida 5.70% 16.15% 41.87%



Experiments – q-risk maps

– Q-risk difference for quantile 0.9 in each 
prediction point of the regions of interest

– Reference – TFT (w26)

• Blue: TFT is better

• Red: reference is better
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Experiments – time-series 
predictions

– Predictions and targets in a location in Rio:

• latitude -21.5, longitude -41.75

– Q-risk for quantile 0.9 (w26)

– (Climatology - TFT) → 1.9% improvement

– (S5 - TFT) → 15.8% improvement
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Conclusions and future work

– Conclusions

• TFT generated significantly improved q-risks 
compared to the S5

• Comparing the 0.9 quantile prediction in one 
location in Rio, we showed that TFT could 
accurately raise the quantile level and respond 
to changes that climatology cannot

– Future work

• Incorporate other input variables, such as 
dynamical model predictions

• Modify the model’s input to support 2D spatial 
information

• Apply additional pre-processing, such as POD 
to capture teleconnections

• Use the interpretable multi-head attention 
block to identify connections between the 
input variables and extreme rainfall
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