

Detect presence of irrigation in uncurated and unlabelled data

Chitra Agastya, Ian Anderson, Sirak Ghebremusse

Sources

Los Ange

BigEarthNet-S2 (BEN)

permanently irrigated land, sclerophyllous vegetation, beaches, dunes, sands, estuaries, sea and ocean

- 590326 non overlapping images from 10 European countries
- Multi spectral images with 12 bands (i.e band 10 has been removed)
- Labelled images with multiple land cover classes, permanently irrigated land being one of them

Used data from croplands.org for generalization testing

SimCLR-S2

Case Study 1

Evaluate precision on geography of interest

- Top 100 predictions of irrigated land with at least 99% confidence
- Supervised model's prediction confidence was far lower than that of SimCLR-S2 model
- Scoring done using Amazon Mturk and verified by visual inspection

Table 1. A comparison of precision scores from SimCLR-S2 and supervised baseline on unseen data from different geography.

Training data size (num records)	Precision (SimCLR-S2)	Precision (su- pervised)
190	0.99	0.11
570	1.00	0.2
1902	0.99	0.36
4756	0.98	0.95
9515	1.00	0.78
19024	1.00	0.47

SimCLR-S2: Top 100 predictions for irrigated land

Case Study 2

Evaluate recall on an unrelated geography

- Ground truth sourced from croplands.org for 6 different countries: Brazil, India, Indonesia, Myanmar, Tunisia and Vietnam
- Download 0.5km x 0.5km land for ground truth coordinates from croplands.org
- SimCLR-S2 generalized better than supervised baseline models

Table 2. A comparison of recall scores on SimCLR-S2 and supervised baseline for irrigated cropland from diverse geographies

Country	Training data (num records)	Recall (SimCLR-S2)	Recall (su- pervised)
Brazil	190	0.75	0.5
India	190	0.9	0.67
Indonesia	570	0.76	0.07
Tunisia	570	0.78	0.91
Vietnam, Myanmar	190	0.9	0.00

Questions?

References

- G. Sumbul, M. Charfuelan, B. Demir, V. Markl, "<u>BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding</u>", IEEE International Geoscience and Remote Sensing Symposium, pp. 5901-5904, Yokohama, Japan, 2019.
- Chen et al., A Simple Framework for Contrastive Learning for Visual Representations, ICML, 2020
- Chen et al., <u>Big Self-Supervised Models are Strong Semi-Supervised Learners</u>, NeurlPS, 2020

Appendix

Research Questions

Can we detect irrigation from satellite imagery with Classify? self-supervised contrastive learning? Can we achieve performance on par with supervised Perform? learning with a fraction of the dataset labelled? Threshold? At what thresholds of labelled data is the self-supervised technique still effective?

Spectral Bands - Spatial and Pixel Resolution

Band	Description	BEN Pixel Resolution
B12	SWIR 2	60x60
B11	SWIR 1	60x60
B09	Water Vapor	20x20
B8A	Vegetation red edge 4	60x60
B08	NIR	120x120
B07	Vegetation red edge 3	60x60
B06	Vegetation red edge 2	60x60
B05	Vegetation red edge 1	60x60
B04	Red	120x120
B03	Green	120x120
B02	Blue	120x120
B01	Coastal aerosol	20x20

Results: Stage 1 SimCLR-S2 Pre-training

Stage 1 SimCLR-S2: Pre-training Contrastive Loss

Hyper parameter tuning

Tuning done on smaller sample for 30 epochs

loss seems to continue on a downward trend

Stage 2 SimCLR-S2 results vs supervised baseline

Performance of SimCLR-S2 fine-tuning results versus Supervised Baselines
Architecture: ResNet152

Stage 3 SimCLR-S2 results vs supervised baseline

1% data split

10% data split

Stage 3 SimCLR-S2: Distill vs Fine-tune

Distillation shows an improvement over finetune scores for many architectures and many data split percentages

BigEarthNet EDA - True Class

SimCLR-S2 - Impact on performance

SimCLR-S2 seems to be bringing the scores closer. So smaller datasets see a big improvement in performance.

t-SNE Results of Pretrained BigEarthNet Latent Vectors

