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ESEESEEEEEEEN
Case Study 1 SESEEEEEEENE
SEENENEFEEEEEN
.. : ............
Evaluz;:[e prec151ond(.)ri.geogr?1')hy oi 1gt1ere(sit e . . . . EEEEEEEE
° op 100 predictions of irrigated land with at leas ............
99% confidence
e Supervised model’s prediction confidence was far . . . . SEENEEEN
lower than that of SimCLR-S2 model . . . . SEEEEEESN

e Scoring done using Amazon Mturk and verified by Em: Sz.TOEOO edictions for imigated land

visual inspection

Table 1. A comparison of precision scores from SimCLR-S2 and
supervised baseline on unseen data from different geography.

Training data size | Precision Precision (su-
(num records) (SimCLR-S2) | pervised)

190 0.99 0.11

570 1.00 0.2

1902 0.99 0.36

4756 0.98 0.95

9515 1.00 0.78

19024 1.00 0.47
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Supervised: Top 100 predictions for irrigated land



Case Study 2

Evaluate recall on an unrelated geography

e Ground truth sourced from croplands.org for 6 different countries:
Brazil, India, Indonesia, Myanmar, Tunisia and Vietnam

e Download 0.5km x 0.5km land for ground truth coordinates from croplands.org
e SimCLR-S2 generalized better than supervised baseline models

Table 2. A comparison of recall scores on SimCLR-S2 and super-
vised baseline for irrigated cropland from diverse geographies

Country Training Recall Recall (su-
data (num | (SimCLR-S2) pervised)
records)

Brazil 190 0.75 0.5

India 190 0.9 0.67

Indonesia | 570 0.76 0.07

Tunisia 570 0.78 0.91

Vietnam, | 190 0.9 0.00

Myanmar
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Questions?
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Research Questions

Can we detect irrigation from satellite imagery with

. : . ify?
self-supervised contrastive learning? Classify

Can we achieve performance on par with supervised Perform?
learning with a fraction of the dataset labelled?

At what thresholds of labelled data is the self-supervised
technique still effective?
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Spectral Bands - Spatial and Pixel Resolution
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Results: Stage 1 SimCLR-S2 Pre-training

SimCLR-S2 Augmentation pairs
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loss

Results

Stage 1 SiImCLR-S2: Pre-training Contrastive Loss

Hyper parameter tuning

Pretrain Contrastive Loss using Adam Optimizer
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Tuning done on smaller sample for 30 epochs

Berkeley

UNIVERSITY OF CALIFORNIA

35

30

25

05

Pretrain Contrastive Loss (SGD vs Adam)

-~ SGD
Adam

loss seems to continue on a downward trend




Results

Stage 2 SImCLR-S2 results vs supervised baseline

Accuracy for basic labeling with different splits F1 score for basic labeling with different splits
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Performance of SimCLR-S2 fine-tuning results versus Supervised Baselines
Architecture: ResNet152
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Results

Stage 3 SImCLR-S2 results vs supervised baseline

1% data split
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accuracy

F1 score

Accuracy for 1% data by model size
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Results
Stage 3 SImCLR-S2 : Distill vs Fine-tune

i Accuracy for ResNetl52 for different data sizes Accuracy by model size for different data sizes
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Distillation shows an improvement over finetune scores for many
architectures and many data split percentages
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BigEarthNet EDA - True Class

Histogram of class distribution
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Statistics for other permanently irrigated cropland that are not included in "Permanently irrigated land"
Images with "Fruit trees and berry plantations" that are also "Permanently irrigated land": 445

Images with "Fruit trees and berry plantations" that are not "Permanently irrigated land": 4309

Images with "Rice fields" that are also "Permanently irrigated land": 1504

Images with "Rice fields" that are not "Permanently irrigated land": 2289

Images with "Vineyards" that are also "Permanently irrigated land": 1377

Images with "Vineyards" that are not "Permanently irrigated land": 8190

Images with "Olive groves" that are also "Permanently irrigated land": 2770

Images with "Olive groves" that are not "Permanently irrigated land": 9768

Total irrigated land: 36686
% Total irrigated land;6.2145323092664055
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SimCLR-S2 - Impact on performance
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SimCLR-S2 seems to be bringing the scores closer. So smaller datasets see a
big improvement in performance.
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t-SNE Results of Pretrained BigEarthNet Latent Vectors

Labelled t-SNE of BigEarthNet Latent Vectors

Heatmap of Irrigated t-SNE Latent Vectors Heatmap of Non-Irrigated t-SNE Latent Vectors 1
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