An Accurate and Scalable Subseasonal Forecasting Toolkit for the United States

Soukayna Mouatadid¹, <u>Paulo Orenstein²</u>, Genevieve Flaspohler³, Miruna Oprescu⁴, Judah Cohen⁵, Franklyn Wang⁶, Sean Knight³, Ernest Fraenkel³, Lester Mackey⁴

Introduction

California

Big Sur fire: hundreds of firefighters battle blaze raging in California

Willow fire is one of dozens burning across US west, including Arizona, Utah and New Mexico, amid dry conditions

Gabrielle Canon

y @GabrielleCanon

Tue 22 Jun 2021 12.52 EDT

▲ Smoke rises from the Willow fire near Big Sur, California, on Sunday. Photograph: AP

Firefighters are battling to contain a wildfire that erupted near Big Sur last week, as the flames continue to engulf the dry California landscape and threaten historical sites, cabins and ranches.

https://www.theguardian.com/us-news/2021/jun/21/big-sur-wildfire-willow-fire

Pacific Northwest soon to be ground zero for recordshattering heat

Computer model projection showing the unusually strong heat dome over the Pacific Northwest on Sunday.

https://www.axios.com/pacific-northwest-heat-wave-all-time-records -17b55cac-7049-4583-86f0-4296093d5691.html

Introduction

- Subseasonal weather prediction (3-6 weeks ahead) is very important:
 - agriculture planning
 - allocation of water resources
 - preparing droughts and floods
 - managing wildfires
- It is a challenging forecast horizon for both meteorological and ML models
- We develop a toolkit of sub seasonal models that outperform operational weather models as well as state-of-the-art learning methods from the literature

Forecasting tasks

- Four tasks:
 - average temperature on weeks 3-4 ahead
 - average temperature on weeks 5-6 ahead
 - accumulated precipitation on weeks 3-4 ahead
 - accumulated precipitation on weeks 5-6 ahead
- Geographical Region: US, 1°x1° resolution, G=862 gridpoints
- Loss function: root mean squared error

rmse_d =
$$\sqrt{\frac{1}{G} \sum_{g=1}^{G} (\hat{y}_{d,g} - y_{d,g})^2}$$

Dataset

- Updated and improved Subseasonal Rodeo dataset (Hwang et al., 2019)
- Variables included:
 - Temperature
 - Precipitation
 - Sea surface temperature
 - Sea ice concentration
 - Multivariate ENSO index
 - Madden-Julian oscillation
 - Relative humidity
 - Geopotential height
 - Numerical weather prediction (NWP) forecasts

Baseline Models

Climatology

- Standard baseline for subseasonal forecasting
- Average temperature or precipitation for specific day and month over 1981-2010

• CFSv2

- Operational US physics-based model from NCEP
- Main NWP baseline

Persistence

Predict most recent value

Learning Models

- AutoKNN, introduced in (Hwang et al, 2019)
- Informer, introduced in (Zhou, 2021)
- LocalBoosting, based on (Prokhorenkova et al, 2018)
- MultiLLR, introduced in (Hwang et al, 2019)
- N-BEATS, introduced in (Oreshkin, 2020)
- Prophet, introduced in (Taylor and Letham, 2018)
- Salient 2.0, based on (Schmitt, 2019)

Our Toolkit

Climatology++

Use adaptively selected window around target day for averaging

• CFSv2++

- Average over range of issuance date and lead times
- Adaptively debiasing using selected window

Persistence++

Learned combination of lagged measurements with NWP

Ensembling

• Uniform ensemble

- Averages over base models
- Typical solution in the weather community
- Online ensemble, introduced in Flaspohler et al (2021)
 - Runs a follow-the-regularized-leader online learning method
 - Results in an adaptive convex combination of base models

Base Models

Climatology++, CFSv2++, Persistence++, LocalBoosting, MultiLLR and Salient 2.0

Toolkit improvements

• For all tasks, toolkit generally improves over baselines in the years 2011-2020

	CLIM	Clim++	CFSv2	CFSv2++	Pers	Pers++
Temp. 3-4w	-0.29	1.60	-14.17	5.49	-110.83	5.60
Temp. 5-6w	1.97	3.90	-15.37	6.16	-172.76	5.51
Precip. 3-4w	7.96	9.03	-4.57	8.53	-28.03	8.78
Precip. 5-6w	7.79	8.85	-4.83	8.34	-31.51	8.17

Toolkit improvements

- For all tasks, toolkit generally improves over learning methods in 2011-2020
- Ensembling provides further improvements

	Toolkit			LEARNING						Ensembles		
	CLIM++	CFSv2++	Pers++	AKNN	LBoost	Inform.	MLLR	N-Beats	Prophet	SAL. 2.0	Uniform	Online
Temp. 3-4w	1.60	5.49	5.60	0.51	-1.18	-40.58	2.04	-47.33	0.71	-9.28	6.07	6.23
Temp. $5-6w$	3.90	6.16	5.51	2.26	-1.28	-65.27	1.24	-53.55	2.83	-4.98	6.64	6.79
Precip. $3-4$ w	9.03	8.53	8.78	7.90	7.53	0.83	7.29	-18.97	8.59	3.17	9.63	$\boldsymbol{9.69}$
Precip. 5-6w	8.85	8.34	8.17	7.62	7.17	0.49	6.94	-20.95	8.40	2.96	9.33	9.27

Performance of models vary over time...

Performance of models vary over space

Performance of models vary over space

Conclusion

- Subseasonal forecasting is a hard but fundamental problem
- Simple modifications of classical weather models yield sizable improvements
- The toolkit introduced has better performance than ML alternatives
- Toolkit models are not only accurate, but highly scalable
- Ensembling is very advantageous; great application of online learning
- Combining weather and ML models is a powerful strategy
- For more information: https://www.microsoft.com/en-us/research/project/ subseasonal-climate-forecasting/