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• Deforestation has impact in greenhouse gas 
emissions and land-use changes are major 
drivers of r e g i o n a l  c l i m a t e  c h a n g e .

• Land uses located nearby a forest often act as 
driving forces of deforestation for these 
remaining forests.

• Understanding the dynamics of these changes 
can assist planning future actions to prevent or 
mitigate adverse impacts.
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Land uses act as driving forces of deforestation
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ForestViT model for deforestation detection
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ForestViT: a vision transformer for multi-label classification applied to deforestation
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P e r  C l a s s  A n a l y s i s

𝐴𝐶𝐶𝑐𝑖 =
𝑇𝑃𝑐𝑖 + 𝑇𝑁𝑐𝑖

𝑇𝑃𝑐𝑖 + 𝑇𝑁𝑐𝑖 + 𝐹𝑃𝑐𝑖 + 𝐹𝑁𝑐𝑖

Accuracy:

Per-class accuracy evaluation of ForestViT, ResNET, VGG16, DenseNET and MobileNET models



P e r  C l a s s  A n a l y s i s

𝑃𝑅𝑐𝑖 =
𝑇𝑃𝑐𝑖

𝑇𝑃𝑐𝑖 + 𝐹𝑃𝑐𝑖

Precision:

𝑅𝐸𝐶𝑐𝑖 =
𝑇𝑃𝑐𝑖

𝑇𝑃𝑐𝑖 + 𝐹𝑁𝑐𝑖

Recall:



O v e r a l l  a c c u r a c y

𝑃𝑅𝑚𝑖𝑐𝑟𝑜 =
σ𝑐𝑖∈𝐶

𝑇𝑃𝑐𝑖
σ𝑐𝑖∈𝐶

(𝑇𝑃𝑐𝑖+𝐹𝑃𝑐𝑖)
Precision: Recall: 𝑅𝐸𝐶𝑚𝑖𝑐𝑟𝑜 =

σ𝑐𝑖∈𝐶
𝑇𝑃𝑐𝑖

σ𝑐𝑖∈𝐶
(𝑇𝑃𝑐𝑖+𝐹𝑁𝑐𝑖)
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M u l t i - l a b e l  a c c u r a c y  

In multi-label classification, a misclassification is no longer a hard wrong or right. A prediction containing a subset of
the actual classes should be considered better than a prediction that contains none of them, i.e., predicting two of the
three labels correctly is better than predicting no labels at all. Hamming-Loss is the fraction of labels that are
incorrectly predicted. The bigger the hamming loss value is, the worst the performance of the model is.
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𝑃𝑝𝑟𝑖𝑚 𝑃𝑝𝑟𝑖𝑚,𝑎𝑔𝑟

ForestViT 0.99 0.96

ResNET 0.99 0.96

VGG16 0.99 0.93

DenseNET 0.99 0.94

MobileNET 0.99 0.93
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𝑃𝑝𝑟𝑖𝑚 𝑃𝑝𝑟𝑖𝑚,𝑐𝑢𝑙

ForestViT 0.99 0.82

ResNET 0.99 0.80

VGG16 0.99 0.74

DenseNET 0.99 0.72

MobileNET 0.99 0.69

𝑃𝑝𝑟𝑖𝑚 𝑃𝑝𝑟𝑖𝑚,𝑙𝑜𝑔

ForestViT 0.99 0.36

ResNET 0.99 0.16

VGG16 0.99 0.27

DenseNET 0.99 0.16

MobileNET 0.99 0.00
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𝑃𝑝𝑟𝑖𝑚 𝑃𝑝𝑟𝑖𝑚,𝑟𝑜𝑎

ForestViT 0.99 0.90

ResNET 0.99 0.90

VGG16 0.99 0.89

DenseNET 0.99 0.88

MobileNET 0.99 0.86

𝑃𝑝𝑟𝑖𝑚 𝑃𝑝𝑟𝑖𝑚,ℎ𝑎𝑏

ForestViT 0.99 0.76

ResNET 0.99 0.77

VGG16 0.99 0.72

DenseNET 0.99 0.72

MobileNET 0.99 0.71

𝑃𝑝𝑟𝑖𝑚 𝑃𝑝𝑟𝑖𝑚,𝑚𝑖𝑛

ForestViT 0.99 0.77

ResNET 0.99 0.77

VGG16 0.99 0.00

DenseNET 0.99 0.77

MobileNET 0.99 0.00
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ForestViT 0.99 0.50

ResNET 0.99 0.31

VGG16 0.99 0.10

DenseNET 0.99 0.21

MobileNET 0.99 0.17
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In our last scenario, we consider 
seven different cases that 
contain images having at least 
two different labels. The primary 
(virgin) forest label is included 
as the standard label for all the 
cases and the second label varies 
and is one of the selected drivers 
(agriculture, cultivation, mining, 
road infrastructure, habitation, 
logging and bare ground) for 
each case. In this case, we 
compare the probability to 
detect the primary forest label in 
those images with the 
probability of jointly detecting 
both the primary forest and the 
driver respective label. 


