Attention for Damage Assessment

Tashnim Chowdhury, Maryam Rahnemoonfar

Computer Vision and Remote Sensing Lab (Bina Lab),

Department of Information Systems,

University of Maryland Baltimore County

Agenda

- Motivation
- Data Collection and Annotation
- Semantic Segmentation Method
- Experimental Results
- Conclusion

Motivation

- Recently natural disaster have caused both human lives and economic losses [1].
- An accurate assessment helps to make rescue plans efficiently.
- Unmanned Aerial Vehicle (UAV) can access difficult places and provides better resolution images.
- DCNN (Deep Convolutional Neural Network) have achieved remarkable performance in assessing damages.
- Research works lack complete image understanding to evaluate the disaster damage scenario completely.

Dataset Collection and Annotation

- Resolution of the captured images are 3000 x 4000.
- The FloodNet [2] dataset consists of video and imagery taken from 80 flights conducted between August 30 September 04, 2017 after hurricane Harvey.
- All flights were flown at 200 feet AGL, as compared to manned assets which normally fly at 500 feet AGL or higher.
- For quality assurance of the annotation, each image passes through two steps verification process.
- All Classes: Building Flooded, Building Non Flooded, Road Flooded, Road Non Flooded, Water, Tree, Vehicle, Pool, and Grass.

Data Annotation Example

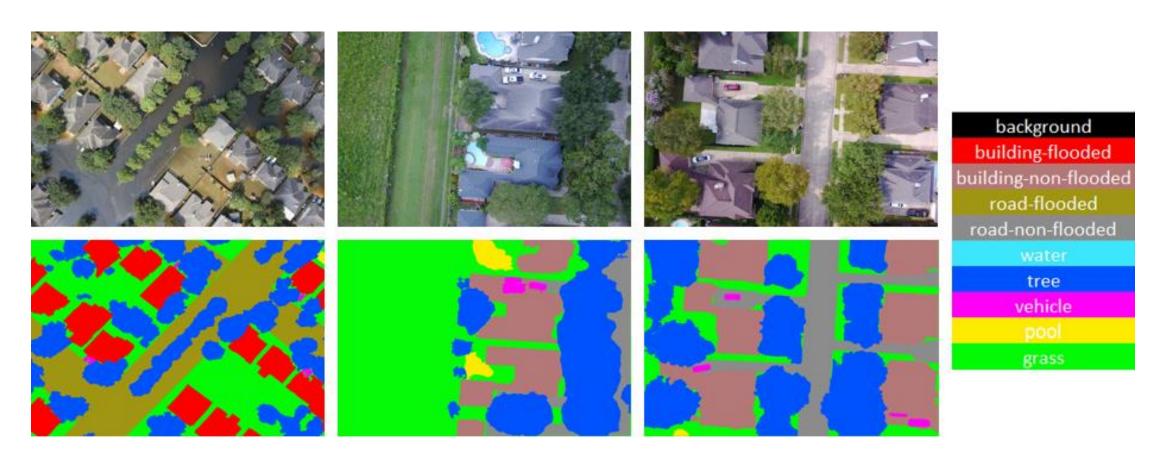


Figure: Sample images from FloodNet.

Semantic Segmentation Method: ReDNetPlus

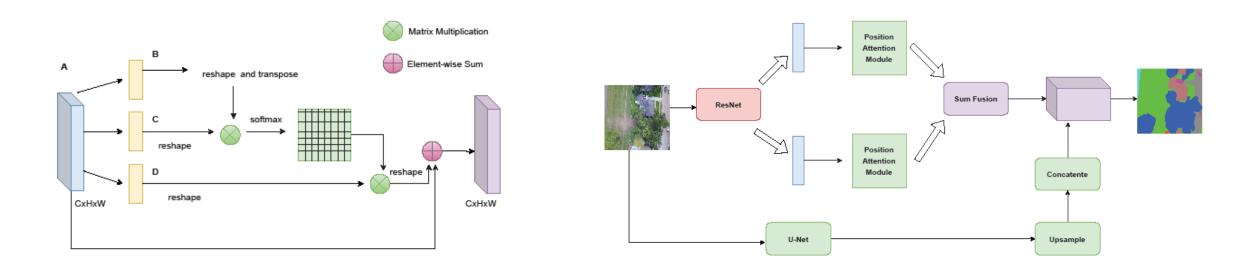


Figure: Position Attention Module (PAM).

Figure: Overview of ReDNetPlus architecture.

Experimental Result

Table: Per-class segmentation results on FloodNet test set.

Method	Building Flooded	Building Non Flooded	Road Flooded	Road Non Flooded	Water	Tree	Vehicl e	Pool	Grass	MIoU
ENet [3]	21.82	41.41	14.76	52.53	47.14	62.56	26.21	16.57	75.57	39.84
DeepLabv3+ [4]	28.10	78.10	32.00	81.10	73.00	74.50	33.60	40.00	87.10	58.61
PSPNet [5]	65.61	90.92	78.69	90.90	91.25	89.17	54.83	66.37	95.45	80.35
Attention U-Net [6]	64.82	86.14	28.20	92.35	77.74	90.95	54.20	71.82	95.29	73.50
ReDNetPlus	80.99	91.76	88.90	91.90	95.56	91.20	48.68	70.90	96.39	84.03

Experimental Result

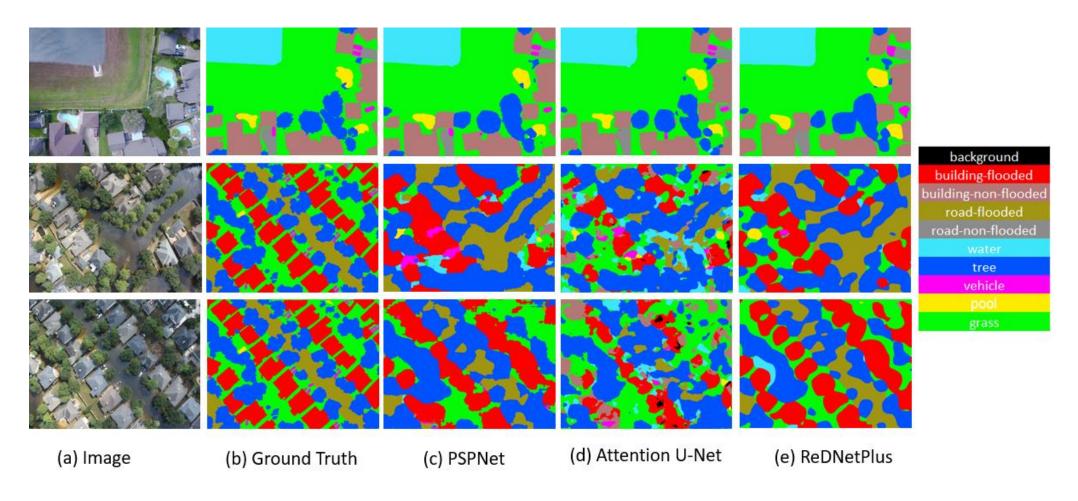


Figure: Visualization of Segmentation of all classes on FloodNet test set.

Conclusion

- An attention based semantic segmentation method, ReDNetPlus, has been implemented on a new high resolution natural disaster dataset named FloodNet.
- Performance of the proposed method has been compared with four popular state-of-art semantic segmentation models.
- ReDNetPlus performed best among all the methods implemented.
- New attention-based methods can be explored in future.

References

- 1. "Noaa national centers for environmental information (ncei). u.s. billion-dollar weather and climate disasters." https://www.ncdc.noaa.gov/billions/events. Accessed: 2021-07-09.
- 2. Rahnemoonfar, M., Chowdhury, T., Sarkar, A., Varshney, D., Yari, M., and Murphy, R. Floodnet: A high resolutionaerial imagery dataset for post flood scene understanding. IEEE Access, 2021.
- 3. A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A deep neural network architecture for real-time semantic segmentation," arXiv preprint arXiv:1606.02147, 2016.
- 4. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, "Encoderdecoder with atrous separable convolution for semantic image segmentation," in Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018.
- 5. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017.
- 6. Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N. Y., Kainz, B., et al. Attention u-net: Learning where tolook for the pancreas.arXiv preprint arXiv:1804.03999, 2018.

Acknowledgement

