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Motivation
• Recently natural disaster have caused both human lives and economic losses [1].

• An accurate assessment helps to make rescue plans efficiently.

• Unmanned Aerial Vehicle (UAV) can access difficult places and provides better resolution images.

• DCNN (Deep Convolutional Neural Network) have achieved remarkable performance in assessing damages.

• Research works lack complete image understanding to evaluate the disaster damage scenario completely.



Dataset Collection and Annotation

• Resolution of the captured images are 3000 x 4000. 

• The FloodNet [2] dataset consists of video and imagery taken from 80 flights conducted between August 30 –
September 04, 2017 after hurricane Harvey.

• All flights were flown at 200 feet AGL, as compared to manned assets which normally fly at 500 feet AGL or 
higher.

• For quality assurance of the annotation, each image passes through two steps verification process.

• All Classes: Building Flooded, Building Non Flooded, Road Flooded, Road Non Flooded, Water, Tree, 
Vehicle, Pool, and Grass.



Data Annotation Example

Figure: Sample images from FloodNet.



Semantic Segmentation Method: ReDNetPlus

Figure : Position Attention Module (PAM). Figure : Overview of ReDNetPlus architecture.



Experimental Result

Table: Per-class segmentation results on FloodNet test set.

Method Building
Flooded

Building
Non 
Flooded

Road 
Flooded

Road 
Non 
Flooded

Water Tree Vehicl
e

Pool Grass MIoU

ENet [3] 21.82 41.41 14.76 52.53 47.14 62.56 26.21 16.57 75.57 39.84

DeepLabv3+ [4] 28.10 78.10 32.00 81.10 73.00 74.50 33.60 40.00 87.10 58.61

PSPNet [5] 65.61 90.92 78.69 90.90 91.25 89.17 54.83 66.37 95.45 80.35

Attention 
U-Net [6]

64.82 86.14 28.20 92.35 77.74 90.95 54.20 71.82 95.29 73.50

ReDNetPlus 80.99 91.76 88.90 91.90 95.56 91.20 48.68 70.90 96.39 84.03



Experimental Result

Figure: Visualization of Segmentation of all classes on FloodNet test set.



Conclusion

• An attention based semantic segmentation method, ReDNetPlus, has been implemented on a new high 
resolution natural disaster dataset named FloodNet.

• Performance of the proposed method has been compared with four popular state-of-art semantic 
segmentation models. 

• ReDNetPlus performed best among all the methods implemented.

• New attention-based methods can be explored in future.
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