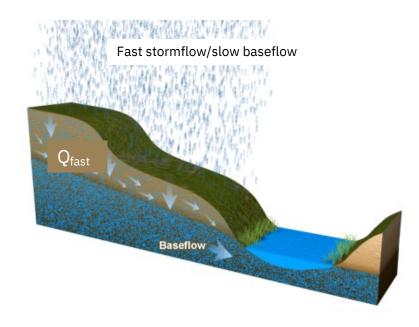
Fast-Slow Streamflow Model Using Mass-Conserving LSTM

Miguel Paredes Quiñones Maciel Zortea Leonardo S. A. Martins

IBM Research Dynamical Systems Modeling Group

Streamflow estimation considerations



"Estimating Basin-Scale Water Budgets With SMAP Soil Moisture Data" Randal D. Koster, Wade T. Crow, Rolf H. Reichle, and Sarith P. Mahanama Fast stormflow runoff

Slow baseflow runoff

 $Q_{fast}/P \sim W$

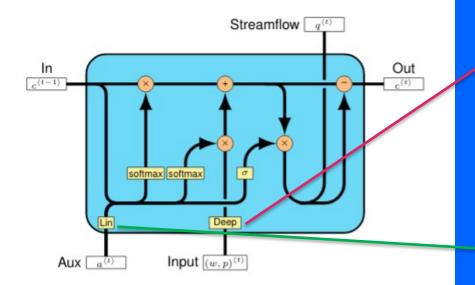
 $Q_{slow} \sim W$

$$Q = Q_{fast} + Q_{slow} = \alpha \cdot w \cdot p + \beta \cdot w + \gamma$$

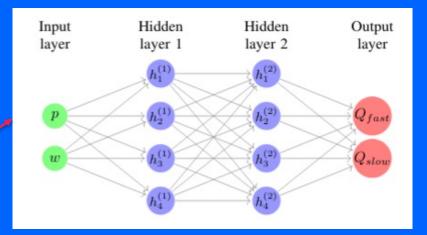
Proposed architecture:

FS-LSTM (Fast-Slow streamflow LSTM)

This streamflow forecast LSTM cell consider the fast and slow streamflow contributions, regulated by auxiliary atmospheric variables



Fas-Slow NN



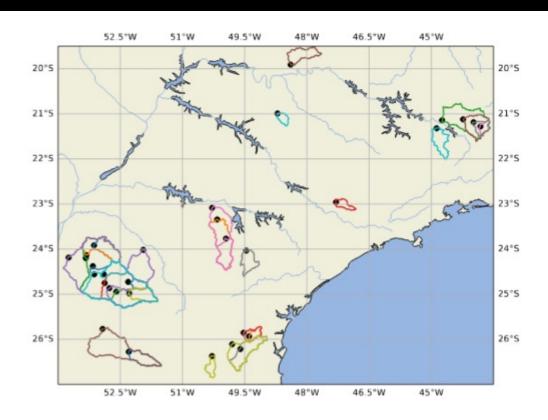
$$\mathbf{r}^t = \mathbf{W}_r \cdot \mathbf{a}_t$$

$$n_r \le n_a \cdot \frac{(n_c^2 + 2 \cdot n_c)}{(n_c^2 + 2 \cdot n_c) + n_a}$$

3

Dataset

The dataset correspond to 32 stations at eastern sub-basins of the Parana river in Brazil colected from CAMELS-BR.

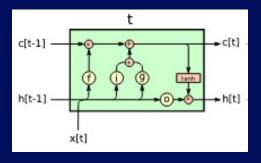


Model comparison

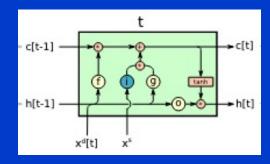
# Cells	# Epochs	Batch	Input	Output
64	30	256	365	1

Common setup for LSTM architectures.

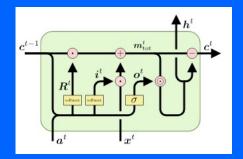
Vanilla LSTM



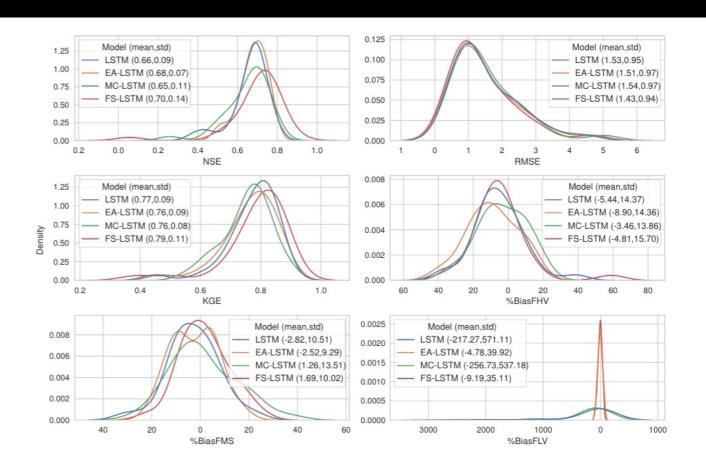
EA-LSTM (Entity aware LSTM)



MC-LSTM



Benchmarks: LSTM vs EA-LSTM vs MC-LSTM vs FS-LSTM



Conclussions and next steps

- We demonstrate that the proposed FS-LSTM achieves high prediction skill for gauges located in southern Brazil.
- Improvements in the high streamflow volumes remain a challenge
- The investigation of strategies to transfer these models to other geographies with less retraining effort.

#