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Results Conclusions & Future Work

Drought monitoring/forecasting ->
Hydro-meteorological variables,
climate indices ...

Drought impacts ->

Vegetation Indices, crop yields,
LULC changes ...

How to identify the comprehensive
impacts on the human dimension?

Can we recognize drought
impacts utilizing social
media, for example, Twitter?



Motivation

Data & Method

Training data set
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= 9 categories of drought impacts

= 14178 records (multi-labeled)

= The average text length: ~ 10 words
= 2011-2020

Results

Apply the fine-tuned

BERT model to tweets

The fine-tuned BERT model:

BERT base model (uncased):
12-layer, 768-hidden, 12-heads,
110M parameters

&

Classifier:

dense layer (ReLu, 50-hidden),
output layer (Sigmoid, 7 units)

Conclusions & Future Work

Testing data set
’ Drought-related Twitter data
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> Il 9-209
[ 209 - 457
I 457-815
[ 815-2060
[] 2060 - 9419
©  Tweet Location

= 26654 records

= The average text length : ~ 15 words

= January 9, 2017 — October 8, 2020

= H#drought, #drought21 (2-digit year),
#droughtca (state abbreviation)
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Re S u ‘tS Summary of the fine-tuned BERT’s performance on the DIR test data set
After being fine-tuned, the BERT-based model had a promising overall performance on the DIR test
data set.
Category of Drought Impacts Recall Precision F1
Overall (micro/macro) 0.86/0.82 0.95/0.95 0.90/0.87
Agriculture 0.93 0.98 0.96
Economy 0.72 0.95 0.85
Fire 0.88 0.97 0.92
Plants & Wildlife 0.78 0.88 0.83
Relief, Response & Restrictions 0.92 0.93 0.93
Society & Public Health 0.56 0.98 0.72
Water Supply & Quality 0.87 0.92 0.89
High
Medium

Low
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Results

Transfer learning on tweets

Summary of the fine-tuned BERT’s performance on keyword-labeled tweets in CA.

Category of Drought Impacts Recall Precision F1
Overall (micro/macro) 0.72/0.67 0.52/0.58 0.60/0.58
Agriculture 0.54 0.78 0.63
Economy 0.42 0.44 0.43
Fire 0.81 0.95 0.87
Plants & Wildlife 0.65 0.67 0.66
Relief, Response & Restrictions 0.81 0.52 0.63
Society & Public Health 0.58 0.09 0.15
Water Supply & Quality 0.92 0.59 0.72
High
Medium

Low

Conclusions & Future Work
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ReS U |tS ‘ Spot-check validation

Agriculture

Which method’s predicted labels
were more rational ?

Keyword

1%

36/39 tweets with the FP labels were related to soil
moisture and food.

53/61 tweets with the FN labels were grouped as the
impacts on plants & wildlife by BERT (parks, lawn,
trees...).

Conclusions & Future Work

Society & Public Health

Which method’s predicted labels
were more rational?

20/64 tweets with the FP labels reflected personal feelings
about drought: worried, frustrated, hopeful...

50/64 tweets with the FP labels were also labeled as water
supply & quality.

22/45 tweets with the FN labels were grouped as the
impacts on agriculture by BERT (food, crops...).



Motivation Data & Method Results

Conclusions & Future Work

* The BERT-based model with fine-tuned hyperparameters had a promising performance on the DIR
data (overall macro-F1: 0.87).

* With the transfer learning to tweets, the fine-tuned BERT model had a satisfying performance.
Although the overall macro-F1 on the keyword-labeled data was 0.58, the spot-check validation
indicated that the BERT model predicted more rational labels than the keyword-based method.

* Drought impacts on society & public health are the most challenging category to be identified.

* Compared to keyword-based recognitions, the BERT had a better generalization capability and
sensitivity to drought impacts and could distinguish between rural and urban areas.

 We recommend developing more studies to analyze and interpret the BERT predictions of
drought impacts:
* Investigate spatial patterns of various drought impacts.

» Differentiate tweets with actual impact information from demonstrations of drought
awareness.
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