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Abstract

Black Sigatoka is the most widely-distributed and
destructive disease affecting banana plants. Due
to the heavy financial burden of managing this
infectious disease, farmers in developing coun-
tries face significant banana crop losses. The
spread of black Sigatoka is highly dependent on
weather conditions and though scientists have pro-
duced mathematical models of infectious diseases,
adapting these models to incorporate climate ef-
fects is difficult. We present MR. NODE (Multi-
ple predictoR Neural ODE), a neural network that
models the dynamics of black Sigatoka infection
learnt directly from data via Neural Ordinary Dif-
ferential Equations. Our method encodes external
predictor factors into the latent space in addition
to the variable that we infer, and it can also pre-
dict the infection risk at an arbitrary point in time.
Empirically, we demonstrate on historical climate
data that our method has superior generalization
performance on time points up to one month in
the future and unseen irregularities. We believe
that our method can be a useful tool to control the
spread of black Sigatoka.

1. Introduction

As one of the most consumed fruits worldwide, bananas had
a global retail value between US $20 and $25 billion in 2016
(BananaLink). However, banana production faces a pre-
dominant leaf-spot infectious disease called black Sigatoka
(Food and Agriculture Organization of the United Nations,
2013). Caused by the fungal plant pathogen Mycosphaerella
fijiensis, the disease leads to premature ripening and a 30
- 50% loss in yields (Queensland Government, 2021). Be-
tween 2007 and 2009, St. Vincent and the Grenadines even
faced a 90% decline in banana crop production due to black
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Sigatoka (Food and Agriculture Organization of the United
Nations, 2013).

The current protection measures include applying expensive
fungicides regularly, which account for up to 40% of the
cost of banana production (approximately $520 million per
year globally) (Joint Genome Institute, U.S. Department
of Energy, 2013). Nevertheless, many local farmers in de-
veloping countries have no access to disease management
facilities due to financial boundaries (Food and Agriculture
Organization of the United Nations, 2013). Thus, predicting
upcoming M. fijiensis infections on banana plants would
allow farmers to take appropriate preventative measures and
mitigate disease management costs.

Summary of Contributions In this study, we predict the
spread of black Sigatoka based on varying microclimatic
conditions by adopting a latent neural ODE approach. !

* We propose Multiple predictoR Neural ODE, a type of
ODE-Net that defines a latent generative function. Our
method extends the architecture of latent Neural ODEs
(Chen et al., 2018) to model multivariate time series
with external factors. See section (4).

* We demonstrate our method’s effectiveness in learning
the dynamics of generated black Sigatoka disease data
based on a historical climate database.

¢ We trained and evaluated RNNs and LSTMs on our
dataset as baseline models and demonstrate that our
method outperforms them. See section (5).

2. Relevant Work

Mathematical Models In 1925, (M’Kendrick, 1925) in-
vented the first mathematical algorithm for epidemics, con-
sisting of a differential equation model that considers a fixed
population with susceptible, infected and recovered individ-
uals (SIR). In 2016, (Ochoa et al., 2016) suggested modeling
black Sigatoka using the autoregressive integrated moving
average (ARIMA) model. However, these “white box” mod-

els have few parameters and strong modelling assumptions,
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Figure 1. Comparison between RNNs and latent Neural ODE in (Chen et al., 2018). The latent Neural ODE outperforms the RNN when

given irregularly-sampled data.

and are often too simplistic to capture the pattern of the
disease precisely. Therefore, disease modelling would fa-
vor state-of-art neural network models, operated with fewer
assumptions and more flexibility.

A Statistical Model For a number of hypothetical cohorts
of M. fijiensis spores, (Bebber, 2019) modelled the infec-
tion of black Sigatoka as a probabilistic survival process
depending on three microclimatic condition variables: rela-
tive humidity (RH, in %), canopy temperature (T, in kelvin),
and moisture storage on canopy (CM, in meters). A cohort
of spores germinates and infects its host during wet periods
and ceases the process during dry ones. A wet period is a
succession of at least three contiguous time points whereby
CM > 0 meters or RH > 98%.
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Given estimated cardinal temperatures (the minimum 77,5,
the optimum 75,,; and the maximum T,,,,, in kelvin), (1)
can determine a relative rate r for spore growth. With the
scale factor « and the shape parameter v we then calculate
a cumulative Weibull hazard function H at each time point
t in a wet period (2). Via (3), H further determines F, the
fraction of a cohort of spores that has infected a leaf. Finally,
Y, the number of cohorts of M. fijiensis spores that caused
infection, is computed as the product of F' with the number
of cohorts 3 (4). Thus, the infection risk is defined as the
sum of hourly spore cohorts that infect a leaf over a time
interval.

Machine Learning Methods for Time Series A recur-
rent neural network (RNN) is a class of artificial neural
networks for sequential modelling. Internal states in an
RNN connect to each other in temporal order, enabling the
network to process inputs of variable lengths. (Hochreiter

& Schmidhuber, 1997) invented long short-term memory
(LSTM), which reinforced the RNN architecture by solv-
ing its vanishing gradient problem. RNNs and LSTMs are
known to perform well on tasks such as language modelling,
whereby data is sampled at regular intervals (Lamb et al.,
2016). However, as suggested by (Chen et al., 2018), apply-
ing RNNss to irregularly-sampled data can be challenging.
Such data is typically discretized into bins of fixed duration,
thus leading to complications if missing data exists.

Latent Neural ODEs (Chen et al., 2018) introduced Neu-
ral ODEs, a family of deep neural networks that parameter-
ize the derivative of the hidden state using a neural network,
which is fed into a black-box ODE solver. Latent Neu-
ral ODEs adopt Neural ODEs as a critical part to model
continuous time series. (Chen et al., 2018) demonstrated
that latent Neural ODEs could outperform RNNs in terms
of extrapolation as well as modelling irregularities. Their
approach is as follows:

(i) Assume that the given time series can be represented
by a latent trajectory uniquely defined by an initial
hidden state z;, and a time-invariant dynamics function
f= %. f is parameterized by a feed-forward neural
network.

(i) An encoder RNN takes in data zy,, ..., z¢, for ob-
served time steps o, ..., ty and produces the parame-
ters p and o for a Gaussian posterior over the initial
state z;, in latent space:

C](Zto ‘{"I"ti ’ ti}i7 ¢) = N(Zto |Ma 0)

(iii) Sample z¢, ~ q(zt, [{xt;, ti}i, D)

(iv) The initial state z;,, dynamics function f, and
the time steps for prediction and extrapolation
to,...,tn, tN41,--,tp are fed into a black-box
ODE solver. This ODE solver applies techniques
such as the Euler method or the Dormand-Prince
method (Dormand & Prince, 1980) to generate values
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Figure 2. The progression of RH, T, and CM throughout 2019 in
Costa Rica (83.812 W, 10.39 N)

Year progression of infection risk

variable
data2017
3011 — data2018

data2019

“Lk;__V.M'NMWLA,ﬁ_ Ll A,V.,WJJ'JY, !

Jan  Feb Mar  Apr  May Jun  Ju  Aug Sep Oct Nov Dec Jan
Date

Figure 3. The progression of the generated infection variable
throughout 2017, 2018 and 2019 in Costa Rica (83.812 W, 10.39
N)
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3. Datasets

Since binding agreements between farmers and companies
highly privatize crop disease datasets, we chose to train
our model with semi-synthetic data. This kind of dataset
has high label consistency and can quickly be produced in
scale with minimum labour cost, meanwhile comprising
a proportion of real-world data. Although (Bebber, 2019)
presents a mechanistic method to estimate black Sigatoka
infections (see Section (2)), we apply their algorithm for
semi-synthetic data generation only, whose prediction is fed
as the “ground truth” to our method.

We generated our dataset based on the Japanese Meteo-
rological Agency 55-Year reanalysis (JRA-55) database
(KOBAYASHI et al., 2015). JRA-55 comprises high spatio-
temporal resolution climate data, collected from 1958 to

the present day. From the vast amount of longitude and
latitude coordinates available in JRA-55, we selected the
longitude-latitude coordinate (83.812 W, 10.39 N) in Costa
Rica which had plentiful banana productions in 2010 as in-
dicated in the Spatial Production Allocation Model (SPAM)
dataset (You et al., 2014) of global production. Then we
obtained a 6-hourly multivariate time series for years 1958 -
2020 inclusive, which contains 91,556 time points and three
microclimatic condition variables: relative humidity (RH),
canopy temperature (T), and moisture storage on canopy
(CM).

To generate the infection variable Y as laid out in Section
(2), we utilized the best-fitting model parameters from the
simulation experiments in (Bebber, 2019), where T,,;, =
289.75, Tope = 300.35, Tpee = 303.45, a = 32.6,
v = 1.76 and 8 = 37.6. Hence we obtained a 6-hourly
four-dimensional time series dataset (three microclimatic
conditions and the infection variable). We split the training,
validation, and test sets with a ratio of 0.80 : 0.15 : 0.05.

4. Methodology: Multiple predictoR Neural
ODE

We introduce the Multiple predictoR Neural ODE (MR.
NODE), an architecture suitable to model time series data
with external predictors. Two key innovations enable this.
Firstly, we implemented a look-up function in the Neural
ODE dynamics. A naive application of the latent Neural
ODE system would learn latent dynamics of all the variables,
which has high computation cost and departs from our goal
to predict only the infection risks. Therefore, we instead
feed external predictors into the latent space as given. In
particular, we concatenate a continuous function w(t) (the
progression of external conditions through time t) to the
encoded inputs, in the dynamics neural network f before
solving the ODE. Secondly, instead of extrapolating the
entire input space in the predictions, we train our latent
Neural ODE system as a “partial” autoencoder, which only
outputs the disease variable Y (see Figure 4).

5. Experiments

We conducted a series of experiments to validate the follow-
ing questions:

1. Does our method extrapolate the number of cohorts
that caused infection well into the future compared to
baseline models? (long extrapolation)

2. Does our method interpolate the number of infections
well at unseen irregularities? (irregular interpolation)

Long Extrapolation For MR. NODE, we used an LSTM
encoder in all experiments. In the training phase, MR.
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Figure 4. Computational graph of our model.

Method | Drop rates | Avg Test MSE

0 13.55

0.3 13.51

RNN 0.5 12.62
0.7 13.70

0 12.76

0.3 12.71

LSTM 0.5 17.94
0.7 14.12

0 12.16

MR. 0.3 12.29
NODE 0.5 12.40
0.7 12.68

Table 1. Average MSE results over the test data windows.

NODE encodes 128 6-hourly time points into the initial
latent state and reconstructs the infection risk for those 128
time points. Loss is calculated using negative log likeli-
hood of ground truths under Gaussian distributions with the
predictions as means. In the validation phase, the model en-
codes 100 time points. It then reconstructs the infection risk
for those 100 time points and extrapolates for 150 further
time points, which is equivalent to extrapolating 37.5 days
into the future. (Table 2).

To simulate irregular time conditions, we randomly dropped
a proportion (p = {0,0.3,0.5,0.7}) of data points for each
data window (Table 2). Notably, we performed data drop-
ping for MR. NODE only during the testing phase because
the model naturally learns a continuous dynamics through-
out all the time points while training. In contrast, we trained
an RNN and an LSTM as baseline models which, being
unable to model continuous trends in the same manner as
Neural ODEs, had to be retrained for every dropping rate,
with each input being concatenated with the time difference
from the previous time step, as suggested in (Chen et al.,

2018).

We compared our method with the baseline models by calcu-
lating the mean squared error (MSE) on extrapolated points
in the testing phase. The results for our model trained on
Costa Rica data are summarized in (Table 1). The plots for
extrapolated data windows in the testing phase against the
ground truth can be found in (Figure 7).

Irregular Interpolation To showcase MR. NODE’s gen-
eralization capabilities to unseen irregularities, we tested
our model for interpolation at irregular times. When encod-
ing a data window of size 100, we randomly dropped data
points with rates p = {0,0.3,0.7,0.9} (Table 2). Then, we
interpolated the disease risk at time points either seen or
unseen by the model for this window. We then plotted the
interpolated windows against the ground truth (Figure 8).

Discussion Our method MR. NODE showed remarkable
advantages over RNNs and LSTMs. Firstly, it consistently
achieves the lowest extrapolation errors across 37.5 days in
the future, even as the irregularity in encoded data windows
increases (Table 1). The current method utilized by farmers
to control black Sigatoka consists of spraying the crops with
fungicides at regular intervals, thus incurring high costs.
With a prediction window length of 37.5 days, farmers can
distribute fungicides more efficiently (for example, decreas-
ing the dosage when there are lower infection risks) hence
reducing overall expenditure.

Secondly, even when observing only 30% and 10% of the
data respectively (Figure 8c, 8d, using data from 2020 as
an example), the model still predicts very similar trends
as when observing the full data windows (Figure 8a). In
practice, missing values frequently appear in agricultural
datasets, especially those recorded in developing countries.
Thus, our model’s ability to handle irregularity adds great
value to predicting black Sigatoka’s infection risks.
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# encoded # reconstructed | # extrapolated
Training 128 128 0
Validation 100 100 150
Extrapolation Test | 100/70/50/30 (drop rate 0/0.3/0.5/0.7) 100 150
Interpolation Test | 100/70/30/10 (drop rate 0/0.3/0.7/0.9) 100 0

Table 2. Training, validation and test settings of MR. NODE

# encoded # extrapolated
Training 100/70/50/30 (drop rate 0/0.3/0.5/0.7) 1
Validation 100/70/50/30 (drop rate 0/0.3/0.5/0.7) 1
Extrapolation Test | 100/70/50/30 (drop rate 0/0.3/0.5/0.7) 150

Table 3. Training, validation and test settings of the baseline RNN and LSTM. Only extrapolation is performed.

6. Future Work

Since we fixed our extrapolation window size during experi-
ments, we envision future researchers to extend the extrapo-
lation windows of the model and to develop an alert system
for peaks in the number of black Sigatoka infections. Rea-
sonable thresholds for Y can give different types of alerts,
thus helping farmers manage the disease. Furthermore, our
model can be applied to many more agricultural time series
forecasting tasks, or other fields. For instance, medical prac-
titioners can apply our model to predict disease onsets for
patients.

7. Conclusion

We propose a new architecture Multiple predictoR Neural
ODEs (MR. NODE), which learnt the dynamics of infec-
tions of the black Sigatoka disease directly from data. Suc-
cessfully modelling time series with multiple predictors,
our method enlarged the problem space that latent Neural
ODEs can solve. We conducted experiments using semi-real
toy datasets and showed our method’s outstanding general-
ization capacities in forecasting peaks of infections up to
37.5 days into the future. Importantly, if trained on real
good-quality data relevant to the disease, our model can
help farmers combat black Sigatoka with preventative ac-
tions, thus reducing the cost of banana crop production and
protecting the most traded fruit worldwide.
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Appendix: Figures

& &

Figure 5. Correlation matrix of data variables in Costa Rica. RH
has strong positive correlation with CM and strong negative corre-
lation with T. However, no signs show explicit correlation between
Y and any other variables.
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Figure 6. Computational graph of the latent Neural ODE model presented by (Chen et al., 2018)
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Figure 7. Extrapolated data windows for MR. NODE, RNN and LSTM.
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Figure 8. Interpolated data windows for MR. NODE with different dropping rate on data points (June 29 2020 - Jul. 25 2020)



