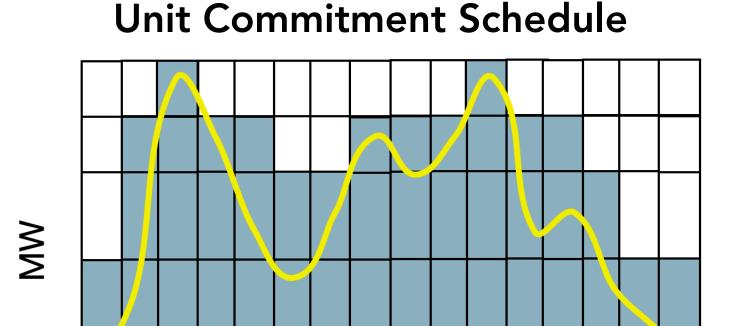


Guided A* Search for Scheduling Power Generation Under Uncertainty

Patrick de Mars & Aidan O'Sullivan UCL Energy Institute

The Unit Commitment (UC) Problem

- Fundamental task in power systems operation: determining on/off schedules of power generators for future period (e.g. day ahead)
- Objective: minimise expected operating costs over uncertain demand, wind and other stochastic processes
- Typically solved by mixed-integer linear programming (MILP) using a deterministic reserve constraint (e.g. proportion of demand or 'N-1' criterion) to manage uncertainty



Period

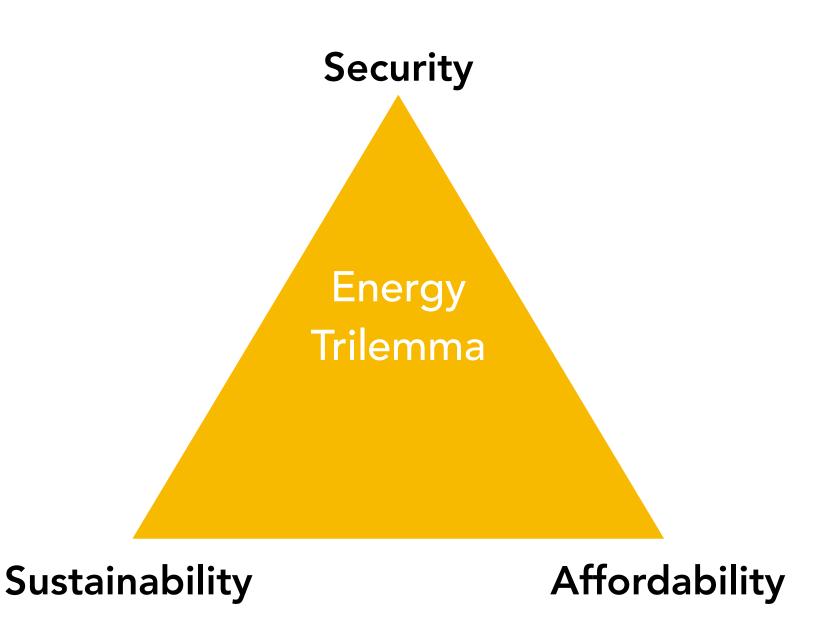
Generators (blue) are scheduled based on a demand forecast (yellow)

Motivation

- Uncertainty increasing due to: renewables penetration, behind-the-meter generation, 'prosumers', electrification of end-use sectors etc.
- Deterministic approaches are sub-optimal in high uncertainty power systems [1]
- Scenario-based stochastic optimisation approaches are computationally expensive [2]
- Large and growing size of power systems means **small efficiency** improvements of existing assets can result in large absolute CO₂ emissions reductions

Applying RL to the UC Problem

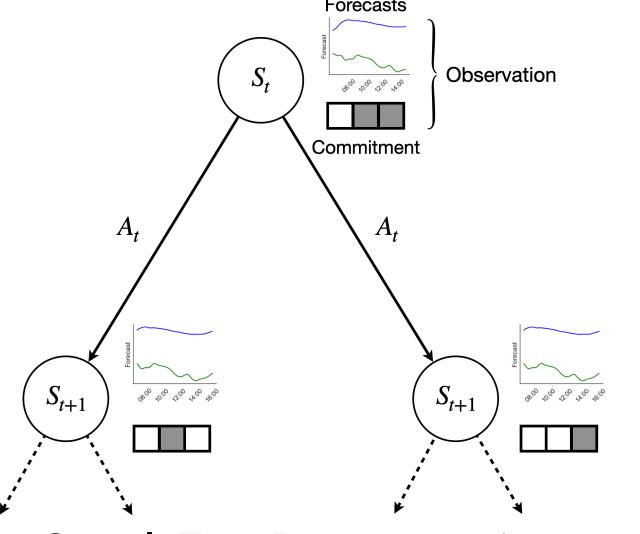
- RL is an attractive framework:
 - Suited to stochastic sequential decision making problems
 - Most of the computation (i.e. training) conducted in advance
 - Reward can be shaped to reflect societal values (energy trilemma)
- Challenges:
 - Large discrete (combinatorial) action space (up to 2^N actions)
 - Extreme penalties for lost load (blackouts), requiring safe operation
 - Long time dependencies (generators cannot be switched on/off frequently)
- Existing research has only considered small power systems (up to 12 generators) and hasn't considered generalisability to unseen problems (training and testing on same profiles)



UC as a Markov Decision Process

- ullet We formulate the UC problem as an episodic MDP with T decision periods and N generators
- Agent observes forecasts and current generator up/down times; actions are combinatorial commitment decisions
- Stochastic demand and wind modelled as auto-regressive moving average (ARMA) processes
- Reward reflects operating cost comprised of: fuel cost, carbon cost, startup cost, lost load cost (penalty for blackouts)
- Search tree representation: replace edge costs with expected cost using Monte Carlo approach
 - Solve the UC problem by finding lowest cost path
 - Note: 2^N branches for N generators!

States	\boldsymbol{u}_t : generator up/down times $\in \mathbb{Z}^N$				
	d : demand forecast $\in \mathbb{R}^T$				
	$m{d}$: demand forecast $\in \mathbb{R}^T$ $m{w}$: wind forecast $\in \mathbb{R}^T$				
	x_t : demand forecast error $\in \mathbb{R}$				
	y_t : wind forecast error $\in \mathbb{R}$				
	t : timestep $0 \le t \le T \in \mathbb{Z}$				
Observations	$\{oldsymbol{u}_t, oldsymbol{d}, oldsymbol{w}, t\}$				
Actions	a_t : commitment decisions $\{0,1\}^N$				
Rewards	r_t : negative operating cost $\in \mathbb{Z}$				
Transitions	$u_{i,t} + 1$, if $a_{i,t} = 1$ and $u_{i,t} > 0$				
	1, if $a_{i,t} = 1$ and $u_{i,t} < 0$				
	$u_{i,t+1} = \begin{cases} -1, & \text{if } a_{i,t} = 0 \text{ and } u_{i,t} > 0 \end{cases}$				
	$\mathbf{u}_{i,t+1} = \begin{cases} u_{i,t} + 1, & \text{if } a_{i,t} = 1 \text{ and } u_{i,t} > 0\\ 1, & \text{if } a_{i,t} = 1 \text{ and } u_{i,t} < 0\\ -1, & \text{if } a_{i,t} = 0 \text{ and } u_{i,t} > 0\\ u_{i,t} - 1, & \text{if } a_{i,t} = 0t \text{ and } u_{i,t} < 0 \end{cases}$				
	$x_t \sim X_t$: sample demand forecast error (from ARMA) $y_t \sim Y_t$: sample wind forecast error (from ARMA)				



Search Tree Representation

Solution Method: Guided A*

- Train a policy $\pi(a \mid s)$ using model-free RL (PPO)
- **Guided expansion** used to reduce search breadth, pruning low probability branches:

$$A_{\pi}(s) = \{a \in A(s) | \pi(a|s) \geq \rho\}$$

$$\qquad \qquad \pi(a|s) := \text{expansion policy}$$

$$\qquad \qquad \rho \qquad \text{:= branching threshold}$$

- Use A* search [3] with a **priority list heuristic** to find lowest cost path through tree to fixed depth H
- In practice the UC problem is time constrained. We used iterative-deepening A* (IDA*) [4] as an anytime algorithm: incrementally increase *H*, terminate when time budget is spent

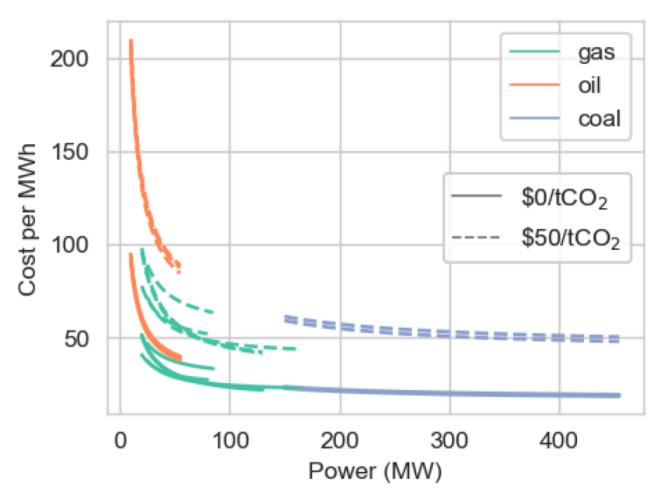
Priority List Heuristic

- A* can exploit a problemspecific heuristic to improve search efficiency
- PL heuristic: commit generators in order of cost; ignore most constraints to improve speed

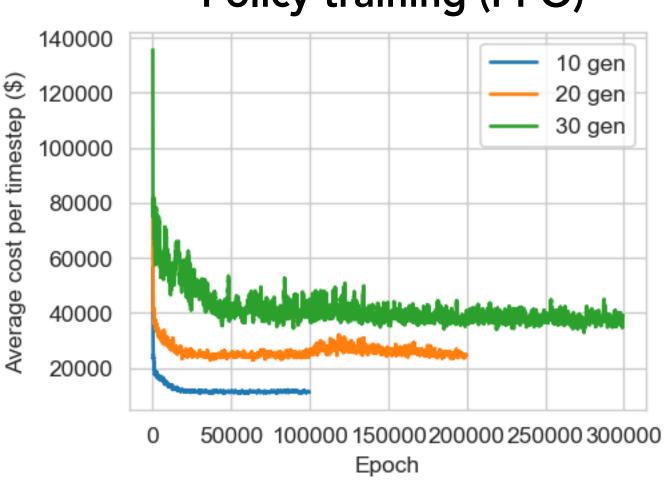
Experimental Setup

- Experiments conducted on power systems of 10, 20 and 30 generators considered, based on data from [5] (widely used UC benchmark)
- Demand and wind forecasts based on GB power system data (4 years of training data with 20 held out days for testing)
- MDP represented in a Gym-style environment (https://github.com/pwdemars/rl4uc)
- Two experiments conducted:
 - Comparison with MILP with no carbon price
 - Impact of carbon price of \$50 per tCO₂

Generator cost curves

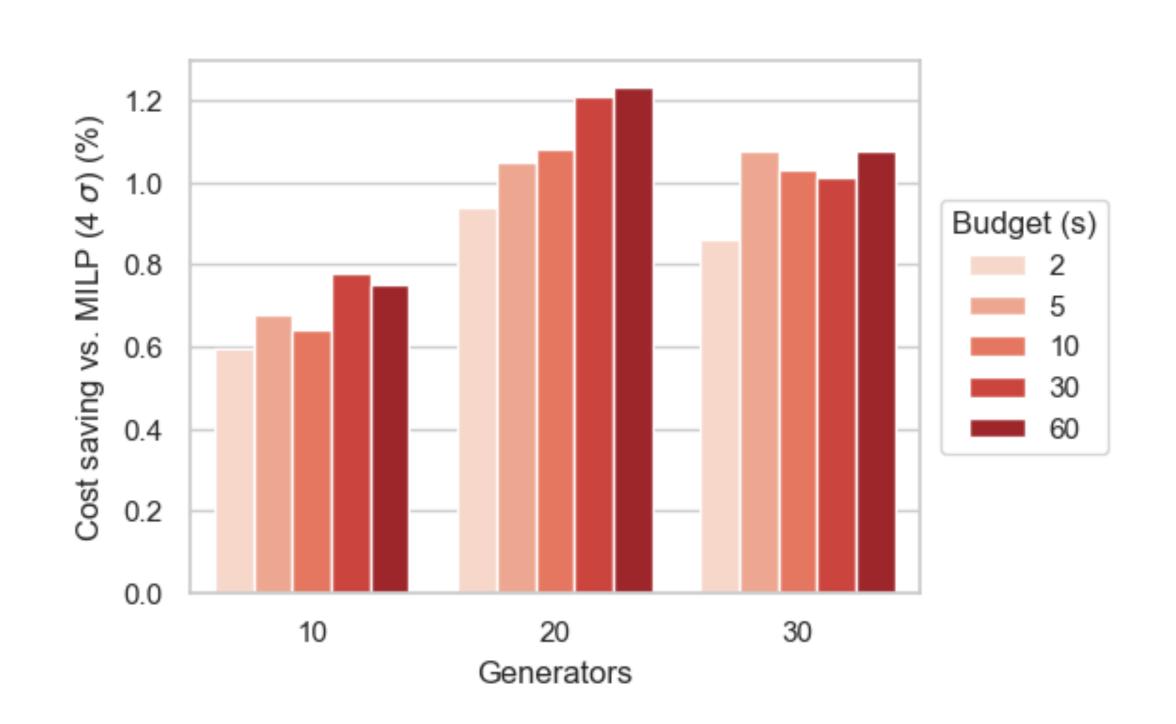


Policy training (PPO)



Experiment 1: Guided A* vs. MILP (no carbon price)

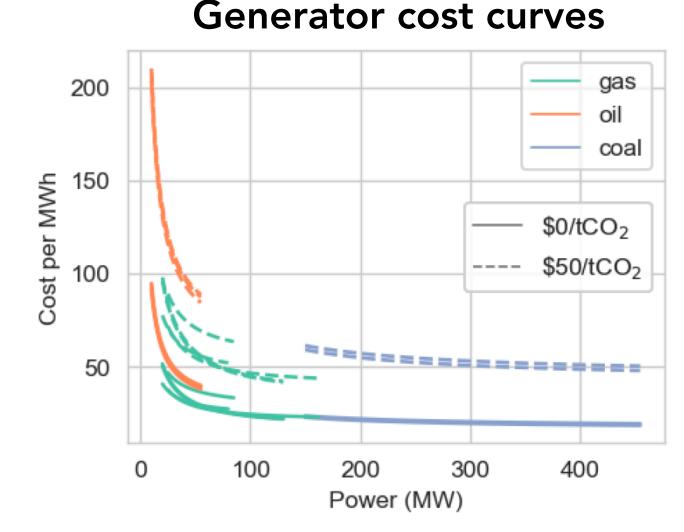
- Guided A* schedules were 0.8—1.2%
 cheaper than MILP with a
 deterministic reserve constraint
 - Comparable to improvements of stochastic over deterministic MILP methods
- More secure operation: loss of load probability roughly 50% lower for guided A* compared with MILP

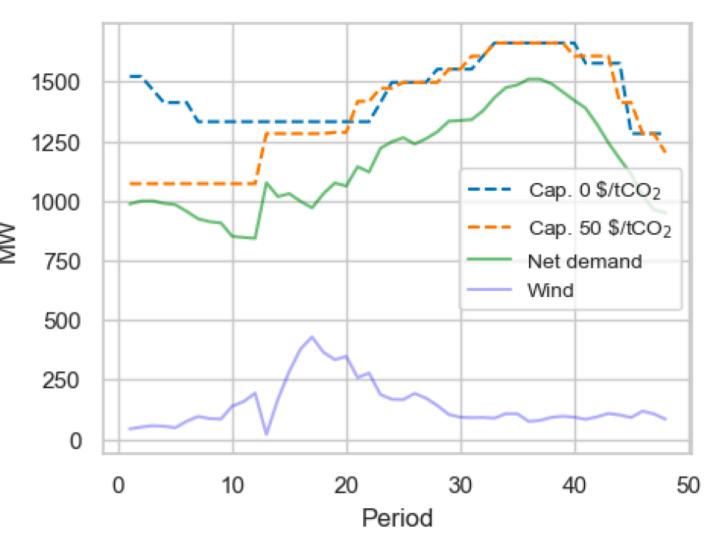


Experiment 2: Guided A* with Carbon Price

# Gens	\$/tCO ₂	LOLP (%)	$ktCO_2$	Coal (%)	Gas (%)	Oil (%)	Startups
10	0	0.12	264.03	99.64	41.88	6.28	141
10	50	0.12	245.89	91.30	61.37	13.19	114
20	0	0.11	527.56	99.09	40.74	8.21	235
20	50	0.09	476.62	86.38	66.24	5.38	164
30	0	0.16	780.43	99.10	40.89	5.69	346
30	50	0.17	724.81	88.59	67.86	12.67	215

- Including a carbon price of \$50 per tCO₂ reduces total carbon emissions by between 7—10%
- Usage of generators (% periods online) shifts from coal towards lower carbon intensity generation (gas)
- Fewer startups, smaller reserve margins with carbon price





Conclusions

- RL can be successfully applied to the UC problem when combined with planning methods
- Reward shaping significantly alters behavioural strategies
- RL for power systems requires domain expertise: methods can't be applied out-of-the-box!

Thank you for listening, please get in touch if you have any questions! patrick.demars.14@ucl.ac.uk

References

- [1] Ruiz, P. A., Philbrick, C. R., Zak, E., Cheung, K. W., and Sauer, P. W. Uncertainty management in the unit commitment problem. IEEE Transactions on Power Systems, 24 (2):642–651, 2009.
- [2] Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., and Zheng, T. Adaptive robust optimization for the security constrainedunit commitment problem. IEEE Transactions on Power Systems, 28(1):52–63, 2012.
- [3] Russell, S. and Norvig, P. Artificial Intelligence: A ModernApproach. Prentice Hall Press, USA, 3rd edition, 2009. ISBN 0136042597.
- [4] Korf, R. E. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.
- [5] Kazarlis, S. A., Bakirtzis, A., and Petridis, V. A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems, 11(1):83–92, 1996.