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The Unit Commitment (UC) Problem
• Fundamental task in power systems operation: 

determining on/off schedules of power 
generators for future period (e.g. day ahead)


• Objective: minimise expected operating costs 
over uncertain demand, wind and other 
stochastic processes


• Typically solved by mixed-integer linear 
programming (MILP) using a deterministic 
reserve constraint (e.g. proportion of demand or 
’N-1’ criterion) to manage uncertainty

Generators (blue) are scheduled based on 
a demand forecast (yellow)

Unit Commitment Schedule



Motivation
• Uncertainty increasing due to: renewables penetration, behind-the-meter 

generation, ‘prosumers’, electrification of end-use sectors etc.


• Deterministic approaches are sub-optimal in high uncertainty power systems [1]


• Scenario-based stochastic optimisation approaches are computationally 
expensive [2]


• Large and growing size of power systems means small efficiency 
improvements of existing assets can result in large absolute CO  emissions 
reductions
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Applying RL to the UC Problem
• RL is an attractive framework:


• Suited to stochastic sequential decision making problems


• Most of the computation (i.e. training) conducted in advance 


• Reward can be shaped to reflect societal values (energy trilemma)


• Challenges: 


• Large discrete (combinatorial) action space (up to  actions) 


• Extreme penalties for lost load (blackouts), requiring safe operation


• Long time dependencies (generators cannot be switched on/off frequently)


• Existing research has only considered small power systems (up to 12 generators) and hasn’t considered 
generalisability to unseen problems (training and testing on same profiles)
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UC as a Markov Decision Process
• We formulate the UC problem as an episodic MDP with  decision 

periods and  generators


• Agent observes forecasts and current generator up/down times; actions 
are combinatorial commitment decisions


• Stochastic demand and wind modelled as auto-regressive moving 
average (ARMA) processes


• Reward reflects operating cost comprised of: fuel cost, carbon cost, 
startup cost, lost load cost (penalty for blackouts)


• Search tree representation: replace edge costs with expected cost using 
Monte Carlo approach


• Solve the UC problem by finding lowest cost path


• Note:  branches for  generators!
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Solution Method: Guided A*
• Train a policy  using model-free RL (PPO)


• Guided expansion used to reduce search breadth, pruning 
low probability branches:


• Use A* search [3] with a priority list heuristic to find lowest 
cost path through tree to fixed depth 


• In practice the UC problem is time constrained. We used 
iterative-deepening A* (IDA*) [4] as an anytime algorithm: 
incrementally increase , terminate when time budget is 
spent

π(a |s)
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Priority List Heuristic 


- A* can exploit a problem-
specific heuristic to improve 
search efficiency


- PL heuristic: commit generators 
in order of cost; ignore most 
constraints to improve speed

 := expansion policyπ(a |s)

          := branching thresholdρ



Experimental Setup
• Experiments conducted on power systems of 10, 20 and 30 

generators considered, based on data from [5] (widely used 
UC benchmark)


• Demand and wind forecasts based on GB power system data 
(4 years of training data with 20 held out days for testing)


• MDP represented in a Gym-style environment (https://
github.com/pwdemars/rl4uc)


• Two experiments conducted:


• Comparison with MILP with no carbon price


• Impact of carbon price of $50 per tCO  2

Generator cost curves

Policy training (PPO)

https://github.com/pwdemars/rl4uc
https://github.com/pwdemars/rl4uc


Experiment 1: Guided A* vs. MILP (no carbon price)

• Guided A* schedules were 0.8—1.2% 
cheaper than MILP with a 
deterministic reserve constraint


• Comparable to improvements of 
stochastic over deterministic MILP 
methods


• More secure operation: loss of load 
probability roughly 50% lower for 
guided A* compared with MILP



Experiment 2: Guided A* with Carbon Price

• Including a carbon price of $50 per tCO  reduces total 
carbon emissions by between 7—10% 


• Usage of generators (% periods online) shifts from coal 
towards lower carbon intensity generation (gas)


• Fewer startups, smaller reserve margins with carbon price
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Conclusions
• RL can be successfully applied to the UC problem when combined with 

planning methods


• Reward shaping significantly alters behavioural strategies


• RL for power systems requires domain expertise: methods can’t be 
applied out-of-the-box! 

Thank you for listening, please get in touch if you have any questions!

patrick.demars.14@ucl.ac.uk
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