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The Unit Commitment (UC) Problem

® Fundamental task in power systems operation:

determining on/off schedules of power

generators for future period (e.g. day ahead) Unit Commitment Schedule

® Objective: minimise expected operating costs
over uncertain demand, wind and other

MW

stochastic processes

® Typically solved by mixed-integer linear e

Generators (blue) are scheduled based on

programming (MILP) using a deterministic
reserve constraint (e.g. proportion of demand or a demand forecast (yellow)
'N-1' criterion) to manage uncertainty



Motivation

Uncertainty increasing due to: renewables penetration, behind-the-meter

generation, ‘prosumers’, electrification of end-use sectors etc.
Deterministic approaches are sub-optimal in high uncertainty power systems [1]

Scenario-based stochastic optimisation approaches are computationally
expensive (2]

Large and growing size of power systems means small efficiency
improvements of existing assets can result in large absolute CO, emissions
reductions
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Applying RL to the UC Problem

® RL is an attractive framework: Security
® Suited to stochastic sequential decision making problems
® Most of the computation (i.e. training) conducted in advance
® Reward can be shaped to reflect societal values (energy trilemma)

® Challenges:

® Large discrete (combinatorial) action space (up to 2" actions) Sustainability Affordability
® Extreme penalties for lost load (blackouts), requiring safe operation
® Long time dependencies (generators cannot be switched on/oft frequently)

® Existing research has only considered small power systems (up to 12 generators) and hasn’t considered
generalisability to unseen problems (training and testing on same profiles)
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r¢: demand forecast error € R
. . . o y;: wind forecast error € R
® We formulate the UC problem as an episodic MDP with T decision i: timestep 0 <+ < T € Z
periods and N generators Observations | {u;, d, w, t}
Actions a;: commitment decisions {0, 1}
® Agent observes forecasts and current generator up/down times; actions Rewards re: hegative operating cost € Z
. . . . e wit+1, ifay=1and u;y >0
are combinatorial commitment decisions | o — 1 and . < (
) 1,1 and uit < 0
Wi t+1 = 4 L | _
—1, if a;y =0 and u;y > 0
Transitions . _
° ° . . U; + — 1, f l; ¢+ — 0t and U; ¢ 0
® Stochastic demand and wind modelled as auto-regressive moving o e =R and e =
xy ~ Xy sample demand forecast error (from ARMA)
average (ARMA) processes yi ~ Y;: sample wind forecast error (from ARMA)
® Reward retlects operating cost comprised of: fuel cost, carbon cost, Forecasts
startup cost, lost load cost (penalty for blackouts) “\» Observation
. . . Commitment
® Search tree representation: replace edge costs with expected cost using
Monte Carlo approach
® Solve the UC problem by finding lowest cost path —
e Note: 2" branches for N generators! ~— —
¥ p ¥ %

Search Tree Representation



Solution Method: Guided A*

® Train a policy n(a|s) using model-tree RL (PPO)

® Guided expansion used to reduce search breadth, pruning
low probability branches:

Ar(s) = {a € A(s)|m(als) = p}

n(a|s) := expansion policy

p := branching threshold

® Use A* search [3] with a priority list heuristic to find lowest

cost path through tree to fixed depth H

® |n practice the UC problem is time constrained. We usead
iterative-deepening A* (IDA*) [4] as an anytime algorithm:
incrementally increase H, terminate when time budget is
spent

- A* can exploit a problem-
specific heuristic to improve
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Experimental Setup

Generator cost curves

® Experiments conducted on power systems of 10, 20 and 30 - sas
oil

generators considered, based on data from [5] (widely usea oo

UC benchmark) = ™
- $0/tCO,
,g)f 100 $50/tCO,
® Demand and wind forecasts based on GB power system data S
(4 years of training data with 20 held out days for testing) ”
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® MDP represented in a Gym-style environment (https:// Power (VW)
github.com/pwdemars/rl4uc) Policy training (PPO)
- 140000 — 10 gor
£ 120000 20 gen

- 30 gen
100000

80000
60000
40000 |

® Impact of carbon price of $50 per tCO, 20000 L —

® [wo experiments conducted:

® Comparison with MILP with no carbon price

Average cost per timestep
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https://github.com/pwdemars/rl4uc
https://github.com/pwdemars/rl4uc

Experiment 1: Guided A* vs.

® Guided A* schedules were 0.8—1.2%
cheaper than MILP with a
deterministic reserve constraint

® Comparable to improvements of
stochastic over deterministic MILP
methods

® More secure operation: loss of load
probability roughly 50% lower for
guided A* compared with MILP
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Experiment 2: Guided A* with Carbon Price

Generator cost curves

#Gens $/tCO, LOLP (%) ktCOy Coal (%) Gas (%) Oil (%) Startups
10 0 0.12 264.03 99.64 41.88 6.28 141
10 50 0.12 245.89 91.30 61.37 13.19 114
20 0 0.11 527.56 99.09 40.74 8.21 235
20 50 0.09 476.62 86.38 66.24 5.38 164
30 0 0.16 780.43 99.10 40.89 5.69 346
30 50 0.17 72481 88.59 67.86 12.67 215

® Including a carbon price of $50 per tCO, reduces total

carbon emissions by between 7—10%

® Usage of generators (% periods online) shi

ts from coal

towards lower carbon intensity generation (gas)

® Fewer startups, smaller reserve margins with carbon price
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Conclusions

® RL can be successtully applied to the UC problem when combined with
planning methods

® Reward shaping significantly alters behavioural strategies

® RL for power systems requires domain expertise: methods can't be
applied out-of-the-box!

Thank you for listening, please get in touch if you have any questions!

patrick.demars.14@ucl.ac.uk



mailto:patrick.demars.14@ucl.ac.uk

References

® [1] Ruiz, P. A., Philbrick, C. R., Zak, E., Cheung, K. W., and Sauer, P. W. Uncertainty management
in the unit commitment problem. |EEE Transactions on Power Systems, 24 (2):642-651, 2009.

® [?] Bertsimas, D., Litvinoy, E., Sun, X. A., Zhao, J., and Zheng,T. Adaptive robust optimization
for the security constrainedunit commitment problem. IEEE Transactions on Power Systems,

28(1):52-63, 2012.

® [3] Russell, S. and Norvig, P. Artificial Intelligence: A ModernApproach. Prentice Hall Press, USA,
3rd edition, 2009. ISBN 0136042597.

® [4] Kort, R. E. Real-time heuristic search. Artificial Intelligence, 42(2-3):189-211, 1990.

® [5]Kazarlis, S. A., Bakirtzis, A., and Petridis, V. A genetic algorithm solution to the unit
commitment problem. IEEE Transactions on Power Systems , 11(1):83-92, 1996.



