

Reconstructing Aerosol Vertical Profiles with Aggregate Output Learning

Sofija Stefanović, Shahine Bouabid, Philip Stier, Athanasios Nenes, Dino Sejdinović

Motivation

GEOS-5 10km resolution Red: Dust Blue: Sea Salt

Motivation

Motivation

2D proxies (vertically aggregated data) often insufficient to understand aerosol distribution

20.0

17.5

15.0

e.g. aerosol optical depth from satellites
$$AOD = \int_0^H b_{\mathrm{ext}}(h) \mathrm{d}h$$

MODIS AOD

0.0900

0.0500

0.0100 a

Problem Statement

General setup:

- Collection of bagged observations: $\{\{x_j^{(i)}\}_{i=1}^H, y_j, z_j\}_{j=1}^n$
- ullet Function to disaggregate: $f: \mathbb{R}^{d_x}
 ightarrow \mathbb{R}$
- Aggregation operator over column height: $\mathrm{Agg}_{j}: f \mapsto \int_{j^{\mathrm{th}}\mathrm{column}} f(x) \, \mathrm{d}h(x)$
- Aggregate observation model:

$$z_j = \mathrm{Agg}_j(f) + \varepsilon_j$$

Specific problem to develop a proof of concept for the methodology:

Reconstruct vertical profiles of sulfate concentrations from aggregated column mass density + chemical and meterological covariates

$$\sigma_{SO_4} = \int_0^H [SO_4](h) dh$$

Dataset

NASA's GEOS-5 Nature Run output used as dataset basis.

	Name	Notation	Units
2D	SO ₄ column density Liquid water path	$\sigma_{ m SO_4}$ LWP	kg·m ⁻² kg·m ⁻²
3D	SO ₄ mass mixing ratio SO ₂ mass mixing ratio Relative Humidity Air temperature Vertical velocity Cloud liquid water Moist air density	$r_{\mathrm{SO}_4} \ r_{\mathrm{SO}_2} \ \mathrm{RH} \ T \ w \ q \ ho$	$kg \cdot kg^{-1}$ $kg \cdot kg^{-1}$ 1 K $m \cdot s^{-1}$ $kg \cdot kg^{-1}$ $kg \cdot m^{-3}$

Table 1. Dataset variables, "2D" corresponds to variables indexed by time, latitude and longitude while "3D" corresponds to variables that also have a height dimension.

Initial Solutions - Baseline 1

Input 3D covariates: $x = (\text{latitude}, \text{longitude}, \text{altitude}, r_{\text{SO}_2}, \text{RH}, T, w, q)$

Objective:
$$\min_{f} \sum_{i=1}^{n} \left(\sigma_{\mathrm{SO}_{4}} - \int_{\mathrm{i}^{\mathrm{th}} \mathrm{column}} f(x) \mathrm{d}h(x) \right)^{2}$$

Hypothesis:
$$f(x) = \beta^{\top} x$$

Solution: Closed form ridge regressor of column-aggregate inputs against AOD

Initial Solutions - Baseline 2

Input 3D covariates: $x = (latitude, longitude, altitude, r_{SO_2}, RH, T, w, q)$

Input 2D covariates: $y = (\text{latitude}, \text{longitude}, \sigma_{SO_4}, \text{LWP})$

Step 1 : Fit
$$g:y_i\mapsto \int_{\mathrm{i^{th}\ column}}f(x)\mathrm{d}h(x)$$
 Step 2 : $\min_f\sum_{i=1}^n\left(\sigma_{\mathrm{SO}_4\ i}-g(y_i)\right)^2$

Hypothesis : $f(x) = eta^{ op} x$ $g(y) = \gamma^{ op} y$

Solution: Closed form two-stage ridge regressor

Experiments

		RIDGE	TWO-STAGE
2D	RMSE (10 ⁻⁶)	3.47	3.52
	$MAE (10^{-6})$	3.39	3.39
	Corr. (%)	93.5	87.5
3D	RMSE (10 ⁻¹⁰)	2.71	2.50
	$MAE (10^{-10})$	1.07	1.10
	Corr. (%)	62.5	63.9

Table 2. Evaluation scores on vertical profile reconstruction; "2D" refers to evaluation against aggregate σ_{SO_4} targets used for training; "3D" refers to evaluation against vertical groundtruth

Discussion & future work

- Two-stage regression shows a slight increase in performance over simple kernel ridge regression with metrics used
- Unclear why the influence of SO2 profiles (important sulfate precursor gas) on predictions varies in experiments
- Metrics more suited to the problem should be developed
- Next step: use specialised aerosol models with lidar simulator and develop kernel-based model to tackle the AOD disaggregation problem:

Reconstruct vertical profiles $b_{
m ext}(h)$ from aggregated observations of the AOD and chemistry + meterological covariates

Code and data available at: https://github.com/shahineb/aerosols-vertical-profiles

