Physics-Informed Graph Neural Networks for Robust Fault Location in Power Grids

Wenting Li, Deepjyoti Deka

Theoretical Division (T-5) Los Alamos National Laboratory July 23, 2021

Motivations: Why faults matter?

Fig.: Global Energy Transformation Prediction and Los Angeles wildfire https://www.irena.org, https://www.marketwatch.com/story

- Renewable energy, such as solar and wind power, is growing to accelerate energy transformation, but these random, intermittent powers increase faults in power grids¹;
- Fast response to faulty conditions is crucial to prevent the further power blackouts or wildfires, which cost huge economic loss.
- We focus on locating faults in the efficient and robust way.

State of the Art & Problem Formulation

- State of the Art:
 - Device-based approaches:
 - e.g., Relays, circuit breakers, fault indicators².
 - Fail to adapt to the characteristics of renewable energy resources;
 - Real-time and accurate location is difficult.
 - Measurement-based approaches:
 - e.g., Impedance-based, Traveling-wave-based, Knowledge-based³.
 - Expensive requirements: full network observability, exact system parameters, high data resolution, sufficient labels.
 - Not robust to: Load variations, topology changes.
- Problem Formulation:
 - Given datasets $V^p \in R^{n \times 6}, p = 1, \dots, N$ of the three phase voltage **from a few measured nodes**, and partial labels $y^q \in \{1, \dots, n\}, q = 1, \dots, m, m \ll N$, denoting the faulted node;
 - Goals: Predict the location of faulty node in the disturbing environment.

²Brahma 2011; Džafić et al. 2016.

³Majidi, Etezadi-Amoli, and Fadali 2014; Chen et al. 2019; Dashti, Ghasemi, and Daisy 2018.

Our Main Contributions

- Propose a two-stage graph learning framework:
 - Stage I: G_I, a GNN with n nodes, learns the graph embedding or representation for the efficient prediction of fault location;
 - Stage II: G_{II} , a GNN with N nodes, improves the location accuracy employing **correlations of labeled and unlabeled** data samples.
- Define adjustable adjacency matrices to address the challenges of sparse observability and low label rates.

Fig.: The structure of our two-stage graph learning framework

Location Accuracy Rate (LAR) Comparison

Fig.: LAR Comparison at different label rates4

- 24480 data samples are simulated by OpenDSS⁵ in the IEEE 123-node benchmark system⁶ with 16% of measured nodes(21 measured nodes);
- The proposed method outperforms CNN, NN, and GCN for various faults, including single phase to ground (SPG), double phase to ground (DPG), and phase to phase faults (PP).

⁴LAR = The number of correctly located faults / The total number of faults , Label rate = The number of training data / The total number of data

⁵Dugan and McDermott 2011.

⁶Jiang et al. 2021.

Robust to Load Variations and Topology Changes

Table: LARs	(%) When	Loads	Vary or	Topology	Changes
-------------	----------	-------	---------	----------	---------

SPG	Changes	$\Delta p = 0.53$	$\Delta p = 0.64$	$\Delta p = 0.74$	Open 1-6	Open 1-3	Open 1&2			
	CNN	93.9	84	82	84.4	88.8	89.2			
	NN	92.5	77.4	74	82.5	81.7	84.5			
	GCN	64.3	56.4	55.1	58.3	59.6	62.2			
	Proposed	98.9	96.3	95.1	94.5	96.9	97.9			
DPG	Changes	$\Delta p = 0.53$	$\Delta p = 0.64$	$\Delta p = 0.74$	Open 1-6	Open 1-3	Open 1&2			
	CNN	96.5	87.8	82.5	88.3	90.3	92.5			
	NN	98	88.2	85.1	91.0	89.3	93.7			
	GCN	98.3	83.7	78.8	66.9	85.6	89.4			
	Proposed	98.4	93.7	92.2	94.4	96.5	96.1			
PP	Changes	$\Delta p = 0.53$	$\Delta p = 0.64$	$\Delta p = 0.74$	Open 1-6	Open 1-3	Open 1&2			
	CNN	97.5	96.1	94.6	95.0	96.9	96.8			
	NN	95.6	90.3	85.9	94.1	94.1	95.2			
	GCN	99.5	96.5	96.7	95.6	97.3	99.1			
	Proposed	99.9	99.4	98.4	99.0	99.9	99.8			

- Generate **another 110160 faults** when Δp , the averaged load variations, increases from 0.53 to 0.74 p.u. (Δp for training is 0.53) and topology changes due to various states of switches, e.g., "Open 1-6" denotes opening the switches 1 to 6;
- Compared with the baselines, our model (without retraining)
 shows higher LAR and less variations than the other baselines.

Conclusions and Future Works

- Propose the **physics-informed** graph neural networks for fault location in distribution systems;
- Overcome the challenges of sparse observation and low label rates by constructing particular adjacency matrices;
- Our method outperforms the baseline classifiers by significant margins, showing **robustness** to the out-of-distribution-data (ODD) due to load variations and topology changes.
- The future work is to study the optimal deployment of sensors at a low cost, and to extend our graph learning framework to other applications.

- Brahma, Sukumar M (2011). "Fault location in power distribution system with penetration of distributed generation". In: vol. 26. 3. IEEE, pp. 1545–1553.
- Chen, Kunjin et al. (2019). "Fault location in power distribution systems via deep graph convolutional networks". In: vol. 38. 1. IEEE, pp. 119–131.
- Dashti, Rahman, Mohsen Ghasemi, and Mohammad Daisy (2018). "Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying π line model". In: vol. 159. Elsevier, pp. 344–360.
- Dugan, Roger C. and Thomas E. McDermott (2011). "An open source platform for collaborating on smart grid research". In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–7.
- Džafić, Izudin et al. (2016). "Fault location in distribution networks through graph marking". In: vol. 9. 2. IEEE, pp. 1345–1353.
- Jiang, Kuan et al. (2021). "Block-Sparse Bayesian Learning Method for Fault Location in Active Distribution Networks With Limited Synchronized Measurements". In: IEEE.

- Majidi, M, M Etezadi-Amoli, and M Sami Fadali (2014). "A novel method for single and simultaneous fault location in distribution networks". In: *IEEE Transactions on Power Systems* 30.6, pp. 3368–3376.
- Novosel, Damir et al. (2009). "IEEE PSRC report on performance of relaying during wide-area stressed conditions". In: *IEEE Transactions on Power Delivery* 25.1, pp. 3–16.
- Smart Grid System Report (2018). United States Department of Energy, Washington, DC, USA, Accessed: Nov. 20, 2019. [Online]. Available: https://www.energy.gov/sites/prod/files.

Q & A

Email: wenting@lanl.gov, deepjyoti@lanl.gov

The Long Version Paper: http://arxiv.org/abs/2107.02275

