

Generative Adversarial Networks for Unsupervised Anomaly Detection in Energy Time Series Data

Praveen P. Handigol, Pandarasamy Arjunan ({praveenph,samy}@iisc.ac.in)
Robert Bosch Centre for Cyber-Physical Systems
Indian Institute of Science, Bengaluru, India

The Problem

~40%

Global Energy Use

~37%

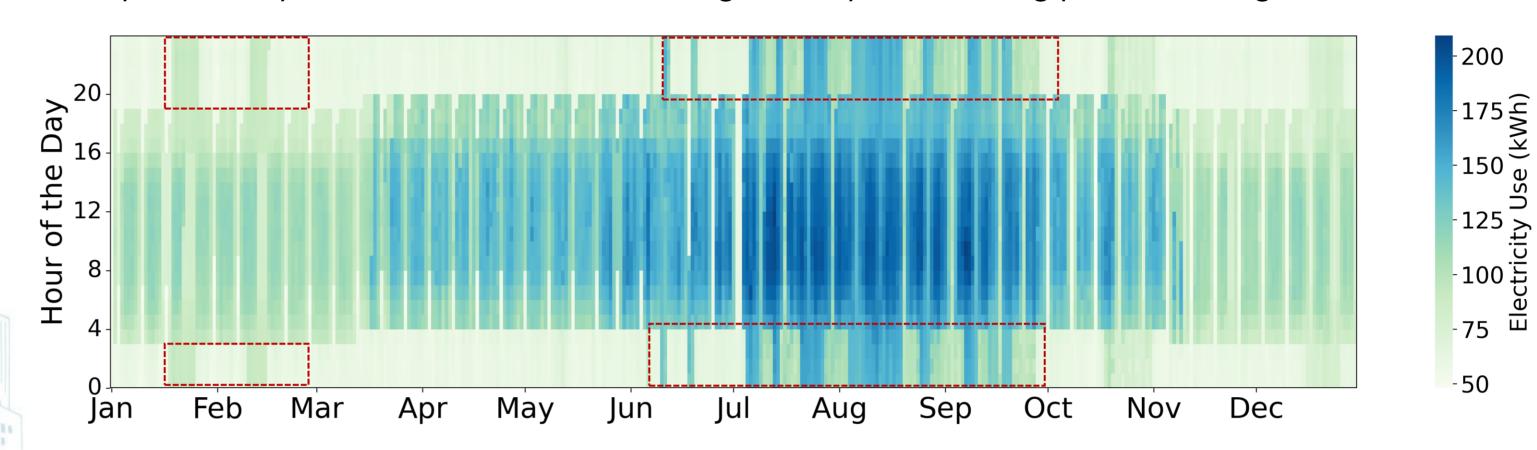
Global CO₂ Emissions

15-30%

Energy is Wasted

Buildings are major contributors to global energy use and emissions!

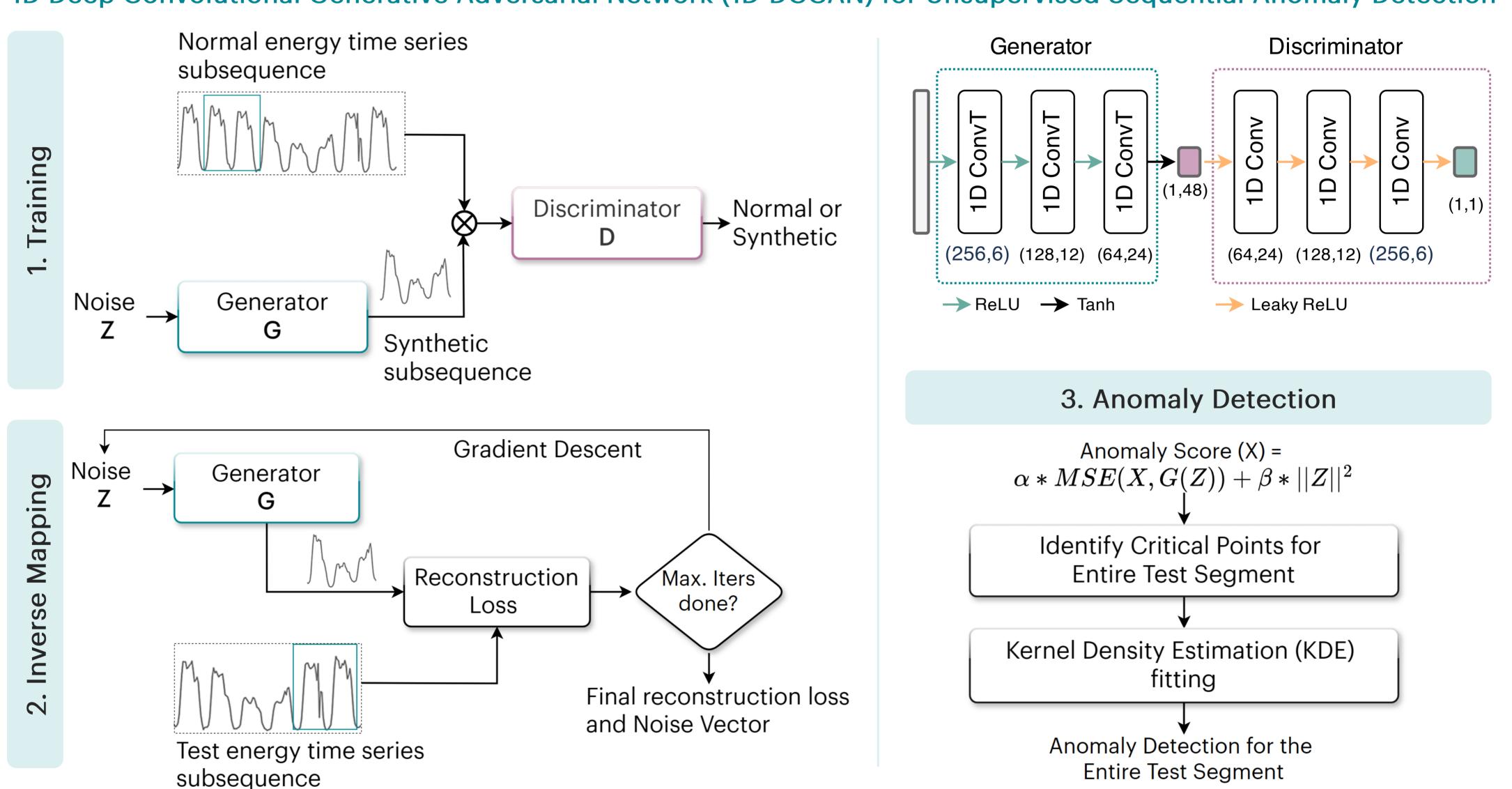
Hourly electricity use of a commercial building over a year, showing potential usage anomalies.



Can AI be used to detect anomalies in smart meter data and reduce energy waste?

The Approach

1D Deep Convolutional Generative Adversarial Network (1D-DCGAN) for Unsupervised Sequential Anomaly Detection



The Results

Dataset: LEAD 1.0 dataset containing annotated hourly electricity meter readings from 200 buildings.

Experiment Setup:

WGAN Settings: "ncritic" = 5, Clipping value = 0.01 Optimizer: Adam (β = 0.5, learning rate = 0.0002)

Batch Size: 128; Epochs: 200 Sub-sequences: Window size = 48

Model Evaluation:

True Positive	False Positive	False Negative
$ d - p_{closest} \le r_t$	$ d - p_{closest} > r_t$	$ p - d > r_t$
Ground truth anomaly (d) has a predicted anomaly ($p_{closest}$) within tolerance r_t	Ground truth anomaly has no predicted anomaly within tolerance	Predicted anomaly (p) has no ground truth anomaly within tolerance

Table 1: Average metrics for different models with tolerance r_t of 24 hours

Model Name	Precision	Recall	F1 score
DCGAN (Conventional)	0.769	0.696	0.697
DCGAN (Wasserstein Loss)	0.764	0.660	0.662
Convolutional VAE	0.787	0.649	0.665
1D CNN Autoencoder	0.785	0.650	0.655
Local Outlier Factor	0.525	0.849	0.620
Isolation Forest	0.466	0.589	0.472

Conclusions:

- DCGAN & Autoencoders outperform traditional unsupervised models (LOF, Isolation Forest) in detecting sequential anomalies.
- Wasserstein Loss DCGAN: Slightly lower
 F1, but offers improved stability.

Paper, code, and data

