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ABSTRACT

The increased uptake of solar energy in the energy transition towards decarboniza-
tion has caused the issue of solar photovoltaic (PV) curtailments, resulting in sig-
nificant economic losses and hindering the energy transition. To overcome this
issue, battery energy storage systems (BESS) can serve as onsite backup sources
for solar farms. However, the backup role of the BESS significantly limits its eco-
nomic value, disincentivizing the BESS deployment due to high investment costs.
Hence, it is essential to effectively reduce solar curtailment while ensuring viable
operations of the BESS. To better understand the synergy of a co-located solar-
BESS system in the real-time electricity market, we model the cooperative bidding
processes of the solar farm and the BESS as a Markov game. We use a multi-agent
deep reinforcement learning (MADRL) algorithm, known as multi-agent deep de-
terministic policy gradient, to concurrently maximize the overall revenue from the
electricity market and reduce solar curtailments. We validate our MADRL-based
strategy using data from a realistic solar farm operating in the Australian electric-
ity market. The simulation results show that our MADRL-based coordinated bid-
ding strategy outperforms both optimization-based and DRL-based benchmarks,
generating higher revenue for the BESS and reducing more solar curtailments.
Our work highlights the importance of coordination between the BESS and re-
newable generations for both economic benefits and progress towards net-zero
transitions.

1 INTRODUCTION AND BACKGROUND

As we move towards a net-zero emission future, renewable energy resources have been increasingly
adopted in modern power systems for decarbonization and climate change mitigation (Lu et al.
(2021)). In particular, solar photovoltaic (PV) has become the leading source of utility-scale renew-
ables (Comello & Reichelstein (2019)) due to its declining levelized electricity costs and convenient
facilitation. Solar energy has attracted about half of the global renewable investment and contributed
the most net added generation capacity in the past decade, with its installed capacity increasing from
304.3 GW in 2016 to 760.4 GW in 2020 worldwide (IEA (2020)). However, the stochastic nature
of solar irradiation leads to a high degree of variability in solar PV generation, subsequently causing
power supply-demand imbalances and oversupply during the daytime, in particular when the solar
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penetration in the grid grows significantly (Zahedi (2011)). Solar curtailment is often inevitable to
ensure the secure operation of power systems, but leads to substantial economic losses and emerges
as a new challenge for net-zero transitions (Mallapragada et al. (2020)). Flexible energy resources
are needed to address the solar curtailment challenge (Frew et al. (2021)).

Battery energy storage systems (BESS) have been increasingly facilitated and co-located with solar
farms as a flexible resource for reducing solar curtailments and improving the economic performance
of solar farms (Hernandez et al. (2015); Chu et al. (2017); Bumpus & Comello (2017)). In a co-
located solar-BESS system, the BESS is usually used as the backup source to smooth the fluctuating
solar PV generation by drawing excess solar energy (otherwise to be curtailed) from the onsite solar
farm and releasing stored energy in the event of solar shortages (Wang et al. (2014)). The investment
cost of the BESS remains significant, despite experiencing a decrease in the past decades. The cost-
effective integration of the BESS into solar farms through optimal placement and sizing has been
studied in Babacan et al. (2017); Khezri et al. (2020); Hassan et al. (2022). However, when the BESS
is only used for reducing solar curtailments, its flexibility has not been fully exploited, limiting the
full economic potential of the BESS in the electricity market (Mallapragada et al. (2020)). The
BESS can take advantage of its operational flexibility to perform energy arbitrage (i.e., buy low
and sell high) in the wholesale electricity market, as a prospective revenue stream for the BESS
in addition to the ancillary role of reducing solar curtailment. Hence, it is of great significance to
design an effective coordination strategy for the co-located solar-BESS system to simultaneously
reduce solar curtailment and improve the BESS’s economic viability, benefiting not only the solar
farms and the BESS, but also the power system by reducing carbon emissions and promoting climate
change mitigation. However, designing such an effective coordination strategy is not trivial due to
the variability of solar PV generation and the volatile electricity market prices.

BESS bidding strategies have been predominantly derived from optimization-based methods, e.g.,
stochastic and robust optimization. For example, related works in González-Garrido et al. (2019);
Attarha et al. (2019); Aghamohamadi et al. (2021); Yang et al. (2022); Graça Gomes et al. (2023)
studied the revenue maximization problems of the solar-BESS system and focused primarily on
participating in the day-ahead electricity market, whose performance heavily depended on the mod-
eling of price forecasts. In addition, these studies often neglected other tasks for the BESS, such as
renewable energy curtailment mitigation. Moreover, participating in the real-time wholesale elec-
tricity market is more profitable than the day-ahead market yet more challenging due to both the
high volatility of the real-time market and complex price drivers (Weron (2014)).

To bridge the research gap in the coordinated bidding strategy between a solar farm and the BESS
in real-time markets, we propose a novel multi-agent deep reinforcement learning (MADRL)-based
bidding strategy for the co-located solar-BESS system. Our strategy aims to concurrently manage
solar curtailments and optimize the system’s participation in the wholesale real-time market. The
solar-BESS system is inherently decentralized, where the two assets can be managed separately.
Such decentralized characteristic enables MADRL to effectively coordinate the bidding processes
of the two assets and to balance the trade-off between market participation and solar curtailment
reduction. Moreover, unlike the aforementioned optimization-based methods, the MADRL-based
strategy can mitigate the uncertainties of solar PV generation and energy prices in a model-free
manner and dynamically learn the optimal coordinated bidding strategy from historical experiences
without prior knowledge or forecast results. We validate our MADRL method using the realistic
electricity market and solar farm data collected from the Australian National Electricity Market
(NEM), which supplies around 9 million customers with a trading value of 16.6 billion Australian
dollars per annum. The coordinated bidding strategy for the co-located solar-BESS system is pre-
sented in Section 2.

2 METHODOLOGY

We consider a co-located solar-BESS system as a price-taker participating in the real-time whole-
sale electricity market, also known as the spot market (which is a major component of the Australian
NEM). Note that our price-taker model does not consider transmission network constraints, indicat-
ing that our bids will not affect other generator bidding decisions or market clearing outcomes. The
co-located solar-BESS system receives the price signal every five minutes via a dispatch process
empowered by the Australian Electricity Market Operator (AEMO). The system paradigm is illus-

2



Published as a workshop paper at “Tackling Climate Change with Machine Learning”, ICLR 2023

Figure 1: The coordinated bidding framework of the solar-BESS system empowered by MADRL.

trated in Fig. 1. For the solar farm, it submits the power bid regarded as the dispatch target, denoted
by pS

t , at each dispatch interval in a five-minute resolution (AEMO (2017)). For the BESS, it simul-
taneously performs energy arbitrage in the spot market and manages solar curtailment via charging
solar energy (otherwise curtailed) from the onsite solar farm. We denote the BESS’s market bid and
the power intended to draw from onsite solar curtailment as pBESS,SM

t and p̂BESS,SC
t , respectively.

2.1 LEARNING OPTIMAL COORDINATED BIDDING STRATEGY VIA MADRL

The co-located solar-BESS system inherently functions in a decentralized manner, i.e., the two het-
erogeneous assets separately submit their bids in the spot market, whose decision-making processes
can be affected by various factors, e.g., uncertain solar PV generation of the solar farm and the
time-varying capacity of the BESS as a result of its previous charge/discharge actions. Such decen-
tralized characteristic enables us to model the real-time bidding process of the co-located system as
a Markov game, where the solar farm and the BESS act as two cooperative players in the Markov
game to maximize the overall revenue in the spot market, while concurrently managing solar curtail-
ments. Specifically, the BESS can take advantage of the excessive solar energy (otherwise curtailed)
from the onsite solar farm which can be exported back to the grid later on through the BESS’s bids.

A Markov game typically consists of five elements: agent space N , state space S, action space A,
probability space P , and reward space R. In particular, the state space S includes all observable
information from all agents in the Markov game. Specifically, the states of the solar farm are the last
clearing price of the spot market (known as the spot price) λt−1, the last solar generation pS,Act

t−1 , and
the current hour index defined as ht ∈ {0, 1, · · · , 23}. Given that solar generators sit idle when there
is no solar irradiation, e.g., at night times, we introduce such an hour index to indicate the effect of
solar irradiation on solar PV output profiles. The state representation of the solar farm is thus defined
as sS

t = [λt−1, p
S,Act
t−1 , ht]. For the BESS, its states include the last spot price, the BESS’s capacity

et−1, and the hour index. Moreover, to achieve more effective solar curtailment management, we
include the number of solar curtailment events (defined as the scenarios in which solar curtailment
would occur if there were no BESS for absorbing the excessive solar energy otherwise curtailed)
within the latest L dispatch intervals, denoted by fSC

t , in the BESS’s state. The BESS’s state can be
expressed as sBESS

t = [λt−1, et−1, f
SC
t−1, ht].

The action space A is a set including the underlying actions of all agents. For the solar farm, its
action is the solar power bid in the spot market, defined as aS

t = [pS
t ]. The BESS’s actions include

its charge/discharge binary variables denoted by vCh
t and vDch

t , the power bid in the spot market
pBESS,SM
t , and the power intended to draw from the onsite solar curtailment p̂BESS,SC

t , which can be
denoted as aBESS

t = [vCh
t , vDch

t , pBESS,SM
t , p̂BESS,SC

t ]. A reward mechanism R is then developed to
examine the effectiveness of agent actions under the current states. In MADRL, the optimal bidding
strategy of each agent is learned via maximizing their corresponding expected cumulative rewards.
Thus, designing appropriate reward mechanisms for the solar farm and the BESS plays a critical
role in optimizing the formulated Markov game. The detailed reward mechanism formulation is
presented in Appendix A. We introduce the multi-agent deep deterministic policy gradient (MAD-
DPG) (Lowe et al. (2017)) for learning the coordinated bidding strategies of the solar-BESS system.
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Figure 2: The evaluated cumulative revenue comparisons of the P&O, D-DRL, and our method.

Table 1: The evaluated cumulative revenue, the amount of absorbed curtailed solar energy, and
reduced carbon emissions derived from the P&O, D-DRL, and our MADRL.

Strategy
Solar

Revenue
(Unit:AU$)

BESS
Revenue

(Unit:AU$)

Total
Revenue

(Unit:AU$)

Absorbed
Curtailed Energy

(Unit:MWh)

Reduced
Carbon Emissions

(Unit:Kilos)
P&O 699, 539 55, 031 754, 569 245 174

D-DRL 839, 779 93, 490 933, 268 489 347
Ours 880,621 120,149 1,000,770 725 514

3 EXPERIMENTAL RESULTS

We use real-world solar farm data collected from the Rugby Run Solar Farm located in Queens-
land, Australia, together with energy prices from the Queensland jurisdiction of the Australian
NEM (AEMO (2020)), to train and evaluate our MADRL-based bidding strategy. Specifically,
data in the first eleven months of 2020 is for training and the last month is for evaluation. One
Nvidia GeForce RTX 3090 is utilized for algorithm training. Also, we develop one optimization-
based benchmark and one DRL-based benchmark for comparison. The former relies on LSTM
networks to produce forecast results of the solar PV generation and energy prices, which are then
used by a mixed integer linear programming solver empowered by the PuLP library (Mitchell et al.
(2011)) to concurrently maximize the overall revenue and minimize solar curtailments (through a
weighted objective). We refer to the optimization-based method as predict-and-optimize (P&O).
For the DRL-based benchmark, we decouple the bidding process of the co-located system into two
Markov decision processes (MDPs) for the solar farm and the BESS, respectively. These two MDPs
are then optimized by two independent DDPG Lillicrap et al. (2015) agents. The settings regarding
both the MDP and the DDPG, including the state, action, reward, and algorithmic hyperparameters,
remain the same for a fair comparison. We refer to it as the decoupled DRL (D-DRL) method. We
present all initialized parameters of our simulations in Appendix B.

The cumulative revenues of the solar farm, the BESS, and the solar-BESS system as a whole
achieved by the P&O, D-DRL, and our method are illustrated in Fig. 2, respectively. The asso-
ciated statistics are presented in Table 1 for cross-comparison. The bidding outcomes reveal that our
MADRL-based bidding strategy significantly outperforms both the optimization-based and DRL-
based benchmarks, with substantial revenue boosts by 27% for the solar farm, 118% for the BESS,
and 33% for the whole system, compared to the P&O method and by 5%, 28%, and 7% compared
to the D-DRL benchmark, respectively.

Furthermore, the BESS empowered by our MADRL-based strategy tends to be more responsive
to solar curtailment events and absorbs a considerable amount of solar energy (otherwise to be cur-
tailed), as shown in Table 1. The curtailment mitigation results demonstrate the significant capability
of our method in reducing solar curtailments and taking advantage of onsite curtailed solar energy
to improve the economic benefits of the solar-BESS system, as depicted in Fig. 2.

Besides improving the viability of the BESS, reducing solar curtailments can reduce carbon emis-
sions to some extent and further promote the energy transition. This is because the absorbed cur-
tailed solar energy, i.e., renewable energy, will be exported back to the grid through the BESS’s

4



Published as a workshop paper at “Tackling Climate Change with Machine Learning”, ICLR 2023

bidding, enabling more variable renewable energy transactions in the electricity market. We convert
the absorbed curtailed energy (in MWh) into the reduced carbon emissions (in kilograms) in Table
1 (EPA (2022)). The associated results indicate that effective coordination between the BESS and
the solar farm, i.e., managing solar curtailments while performing energy arbitrage, would have a
significantly positive impact on decarbonizing the future power grids and mitigating climate change.

4 CONCLUSION

This paper develops an effective coordination strategy for the co-located solar-BESS system to im-
prove the system’s economic benefits in the spot market and reduce carbon emissions. We propose a
model-free MADRL-based bidding strategy for the solar farm and the BESS to dynamically balance
the trade-off between energy arbitrage and solar curtailment reduction. We validate the proposed
MADRL-based method using realistic solar farm data in the Australian NEM. Simulation results
demonstrate the effectiveness of our method, which outperforms the optimization-based and DRL-
based benchmarks in achieving more economic benefits and better management of solar curtailment.
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A REWARD MECHANISM OF THE SOLAR-BESS SYSTEM

For the solar farm agent, to mitigate the uncertainty of solar PV generation and update accurate
dispatch targets, the reward function for the solar farm can be formulated as

rS
t = −λt

∣∣∣∣∣pS
t − pS,Act

t

pS,Ava
t

∣∣∣∣∣ , (1)

where λt is the spot price and pS,Ava
t is the availability, i.e., upper power limit, of the solar farm at

the current dispatch interval.

For the BESS agent, to perform effective energy arbitrage, we introduce two charge/discharge in-
dicators, denoted by ICh

t /IDch
t , to indicate the appropriate timing of arbitrage operations, which are

defined as

ICh
t = sgn

(
λ̄t − λt

)
, (2)

IDch
t = sgn

(
λt − λ̄t

)
, (3)

where sgn(·) is the sign function and λ̄t is the exponential moving average of the spot price. The
moving average price λ̄t is expressed as

λ̄t = τ λ̄t−1 + (1− τ)λt, (4)

where τ ∈ (0, 1) is a smoothing parameter. The proposed charge/discharge indicators encourage the
BESS to purchase power at relatively lower spot prices, i.e., λt < λ̄t, and sell power at high prices,
i.e., λt > λ̄t. If the BESS does not follow such an arbitrage guideline to bid in the spot market, the
charge/discharge indicators will be negative, resulting in negative rewards. Thus, the BESS’s reward
function for energy arbitrage can be formulated as

rBESS,SM
t =

pBESS,SM
t

PBESS
max

|λt − λ̄t|
(
ICh
t vCh

t

1

ηCh + IDch
t vDch

t ηDch
)
, (5)

where PBESS
max is the BESS’s rated power and ηCh, ηDch are the charging/discharging efficiencies of

the BESS.

Moreover, the BESS is incentivized to store otherwise curtailed solar power from the onsite solar
farm. The reward function for managing solar curtailments is designed as

rBESS,SC
t = λt

pBESS,SC
t

PBESS
max

fSC
t−1

L

1

ηCh , (6)

where pBESS,SC
t is the actual power drawn from the onsite solar farm.

Combining reward functions for energy arbitrage and solar curtailments, the overall reward function
for the BESS can be written as

rBESS
t = rBESS,SM

t + βrBESS,SC
t , (7)

where β is the incentive factor for solar curtailment reduction.
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B SIMULATION PARAMETER SETUP

• Australian NEM dispatch interval: 5 minutes.
• BESS charging efficiency: 0.95.
• BESS discharging efficiency: 0.95.
• BESS rated power: 10 MW.
• BESS lower energy limit: 0.5 MWh.
• BESS upper energy limit: 9.5 MWh.
• The time range for counting the number of solar curtailment events: L = 10.
• Smoothing parameter for calculating the exponential moving average of the spot price:
τ = 0.9.

• Incentive factor for solar curtailment reduction: β = 6.
• BESS storage capacity: 10 MWh.
• BESS minimum state of charge: 5%.
• BESS maximum state of charge: 95%.
• Noise used in DDPG and MADDPG: Gaussian noise N (µ, σ) with mean µ and standard

deviation σ set as 0 and 0.1, respectively.
• Structure of the actor network: Three layers all with 256 neurons.
• Structure the critic network: Three layers all with 256 neurons.
• Learning rate for the actor network in DDPG and MADDPG: 0.0008.
• Learning rate for the critic network in DDPG and MADDPG: 0.0008.
• Optimizer for neural networks: Adam.
• Batch size: 256.
• Discounted factor for reward calculation: 0.99.
• Smoothing parameter for target network update: 0.01.
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